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Neural Network Models in EMG Diagnosis 
Constantinos s. Pattichis, Member IEEE, Christos N. Schizas, Senior Member, IEEE, 

and Lefkos T .  Middleton 

Abstruct- In the past years, several computer-aided quanti- 
tative motor unit action potential (MUAP) techniques were re- 
ported. It is now possible to add to these techniques the capability 
of automated medical diagnosis so that all data can be processed 
in an integrated environment. In this study, the parametric 
pattern recognition (PPR) algorithm that facilitates automatic 
MUAP feature extraction and Artificial Neural Network (ANN) 
models are combined for providing an integrated system for 
the diagnosis of neuromuscular disorders. Two paradigms of 
learning for training ANN models were investigated, supervised, 
and unsupervised. For supervised learning, the back propagation 
algorithm and for unsupervised learning, the Kohonen’s self- 
organizing feature maps algorithm were used. Diagnostic yield 
for models trained with both procedures was similar and on 
the order of 80%. However, back propagation models required 
considerably more computational effort compared to the Ko- 
honen’s self-organizing feature map models. Poorer diagnostic 
performance was obtained when the li-means nearest neighbor 
clustering algorithm was applied on the same set of data. 

I. INTRODUCTION 

LECTROMYOGRAPHY (EMG) is the study of the E electrical activity of muscle, and forms a valuable aid 
in the diagnosis of neuromuscular disorders. EMG findings 
are used to detect and describe different disease processes 
affecting the motor unit, the smallest functional unit of the 
muscle. With voluntary muscle contraction, the action potential 
reflecting the electrical activity of a single anatomical motor 
unit is recorded. It is the compound motor unit action po- 
tential (MUAP) of those muscle fibers within the recording 
range of the needle electrode [I]. In routine clinical EMG, 
MUAP morphology is subjectively evaluated by the examiner. 
However, a purely descriptive approach is not sufficient and an 
exact quantitative measurement of different MUAP parameters 
is necessary. Manual quantitative measurement of MUAP 
parameters was introduced by Buchthal and co-workers in 
the 1950’s and since then, has proven to be a valuable 
aid in assessing muscle pathology [2]-[4]. However, manual 
analysis is time-consuming and the subjective measurement of 
MUAP parameters introduces variable sources of error. Recent 
advancements in computer technology in the last 20 years 
have made automated quantitative EMG analysis feasible [5]. 
Computer-aided EMG processing saves time, standardizes the 
measurements, and enables the extraction of additional features 
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which cannot be easily calculated manually. To further the 
development of quantitative EMG techniques, the need has 
emerged for adding automated decision making support to 
these techniques so that all data is processed in an integrated 
environment. Towards this goal, Blinowska [6] proposed the 
use of discriminant analysis for the evaluation of MUAP find- 
ings, Coatrieux and associates [7]-[9] applied cluster analysis 
techniques for the automatic diagnosis of pathology based 
on MUAP records, Andreassen and co-workers [ lo]-[ 121 
developed the MUNIN (Muscle and Nerve Inference Net- 
work) which employs a causal probabilistic network for the 
interpretation of EMG findings, Fuglsang-Frederiksen and 
his group [13], [14] developed a rule-based EMG expert 
system named KANDID, and Jamieson [15], [I61 developed 
an EMG processing system based on augmented transition 
networks. In most of these systems, the generation of the input 
pattern assumes a probabilistic model, with the matching score 
representing the likelihood that the input pattern was generated 
from the underlying class [17]. In addition, assumptions are 
typically made concerning the probability density function of 
the input data. Recently, artificial neural networks (ANN) have 
been proposed as an alternative tool to pattern recognition 
and classification problems. One of their major advantages is 
that ANN models make no assumption about the underlying 
probability density functions of the input data, thus possibly 
improving the performance of classifiers, especially when the 
data depart significantly from normality. Other features of 
artificial neural networks that make them so attractive to 
investigate are that they: 1) exhibit adaptation or learning, 
2) pursue multiple hypotheses in parallel, 3) may be fault 
tolerant, 4) may process degraded or incomplete data, and 5) 
seek answers by carrying out transformations. 

In this paper, artificial neural networks are used as a new 
approach for the automatic classification of EMG features 
recorded from normal individuals and patients suffering with 
neuromuscular diseases. Two learning paradigms for ANN 
models are studied: supervised and unsupervised. In supervised 
learning, the classical back propagation algorithm is used, and 
in unsupervised learning, the Kohonen self-organizing feature 
maps algorithm is applied. Performance of neural network 
models is compared with the K-means nearest neighbor ( K -  
NN) cluster analysis classifier. 

11. METHOD 

EMG is recorded from the biceps brachii muscle at slight 
voluntary contraction for five seconds using the concentric 
needle electrode. The recording points within the muscle 
are standardized, with MUAP’s recorded from three to five 
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Fig I An integrated system tor computer-dided EMG using multilayer neural networks 

different needle insertions. MUAP’s are not recorded close to 
the surface of the muscle. The electrode is usually advanced at 
least 3-5 mm into the muscle before recording. The electrode 
is also moved at least 3-5 mm between recordings to make 
sure that different MUAP’s are recorded. The electrode is 
advanced until the medial or posterior border of the muscle 
is reached. The electrode is then pulled out to the fascial and 
inserted to a new radial direction. Usually, one to two MUAP’s 
are simultaneously active within the pick up radius of the 
electrode. Recording more than two MUAP’s simultaneously 
is more common in pathological cases. For a quantitative EMG 
study, at least 20 MUAP’s are recorded, with the examination 
procedure taking on average 3 0 4 5  min, depending on subject 
cooperation. 

MUAP’s are identified and selected from the EMG record- 
ing based on predetermined criteria. A parametric pattern 
recognition (PPR) algorithm based on MUAP features is 
applied for recognizing similar MUAP’s generated from the 
same motor unit. MUAP features are then applied to a classifier 
system for obtaining a diagnosis. The proposed integrated sys- 
tem of MUAP analysis [ 181 follows the path: 1) acquisition, 2) 
identification, 3) selection, 4) parametric pattern recognition, 
and 5) neural network models and diagnosis, illustrated in 
Fig. 1. 

A. Acquisition 

The EMG signal is freely triggered and a predetermined 
epoch of five seconds is acquired, bandpass filtered at 3 Hz 
to 10 KHz, and sampled at 20 KHz with 12 b resolution. The 
signal is then lowpass filtered at 8 KHz. 

B. Ident$cation 

identification as follows: 
A three-step procedure is applied for individual MUAP 

1) MUAP extraction. EMG is high-pass filtered at 250 Hz 
and the MUAP beginning and ending extraction points, 
BEP and EEP respectively, are identified by sliding an 

pV. BEP is the first point that satisfies the following 
criterion searching to the left of the potential waveform: 
the signal to the left of BEP remains within rt 40 pV 
for 3 ms. EEP is located in a similar way, searching 
to the right of the potential waveform. These extraction 
points are then mapped to the original signal. 

2) MUAP baseline correction. The average MUAP base- 
line over 3 ms to the right of point P is computed. This 
is then subtracted from the potential waveform. Point P 
is the point which is 6 ms to the left of BEP. 

3) MUAP measurement. For each potential the following 
seven parameters are measured, illustrated in Fig. 2: 

Duration (Dur): MUAP beginning and ending 
are identified by sliding a measuring window of 
length 3 ms and width & 10 pV. 
Spike duration (SpDur): measured from the first 
to the last positive spike. 
Amplitude (Amp): difference between the mini- 
mum positive peak and the maximum negative 
peaks. 
Area: sum of the rectified MUAP integrated over 
the duration measure. 
Spike Area (SpArea): sum of the rectified MUAP 
integrated over the spike duration. 
Phases (Ph): number of baseline crossings that 
exceed 25 pV plus one. 
Turns (T): number of positive and negative peaks 
separated from the proceeding and following peak 
by 25 pV. 

The initial part duration is measured from the onset of the 
potential to the first positive peak. This parameter is used by 
the pattern recognition algorithm only. 

C. Selection 

Each individual MUAP is selected for entry to the para- 
metric pattern recognition (PPR) classification process if it 

extraction window of length 3 ms and width f 40 satisfies the following criteria: 
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Phases 2 2. 
Rise time 5 1.5 ms (time interval between the minimum 
positive peak and the maximum negative peak). This 
criterion is not applied for MUAP’s having more than 
four phases. 
Amplitude 2 50 pV. 
1 ms < Duration < 40 ms (duration upper and lower 
thresholds were selected to drop potentials with erro- 
neous duration measure entering the pattern recognition 
algorithm). 

D. Parametric Pattem Recognition 

The parametric pattern recognition algorithm tries to iden- 
tify at least three MUAP’s which belong to the same group 
to form a set. The classification is based on five steps where 
MUAP features: phases, amplitude, spike duration, initial part 
duration, and duration are examined in sequence [18]. The 
algorithm is briefly described by the following steps: 

1) Step 1. Create Phaseclasses: A Phaseclass is generated 
by identifying three or more MUAP’s that have the same 
number of phases. 

2) Step 2. Create Ampclasses: For each PhaseClass(A) 
calculate AmpClasses(A) by the following recursive definition: 

First the minimum amplitude (MinAmp) is computed. Then, 
the ExRange set is formed as the collection of MUAPs with 
amplitude in the range [MinAmp, PxMinAmp] where /3 = 1.5. 
ExRange forms a class if it contains three or more members. 
MUAP’s that do not belong to ExRange set constitute the 
unexamined set, UnExRange. UnExRange is broken into a 
new ExRange and a new UnExRange. Then, the MinAmp 
is calculated for this new ExRange, and the entire process 
continues as before until the UnExRange becomes empty. 

3) Step 3. Create SpDurClasses: This step is implemented 
in a similar way as Step 2), for the spike duration mea- 
sure, where f i  is 1.2. For each AmpClass, SpDurClasses are 
calculated by the above recursive definition. 

4 )  Step 4.  Create InDurClasses: For each SpDurClass, the 
median of the initial part duration is calculated to decide 
whether or not the current class under test would be rejected 
or to continue to Step 5) .  If there are less than three MUAP’s 
in the class under investigation whose initial duration is not 

TABLE I 
MUAP PARAMETERS OF AN EMG STLDY OF A NORMAL SUBJEC7 

~ ~~ 

MUAP N Dur SpDur Amp Area SpArea Ph T 
CLASS (ms) (ms) (mV) (mVms) (mvms) 

1 4 13.00 9.51 0 68 0.48 036  4 0 0  5.00 

2 5 11.30 8 96 0 3 3  0.37 029 2.00 2 0 0  

3 3 9.90 2.56 0.41 0 41 0.20 3 00 3.00 

4 3 8.80 7 16 0 16 0 1 7  028  2.00 2.00 

5 6 9.40 7 31 0 51 0 65 042  3.00 3.00 

6 8 6 30 6 3 0  0 0 7  0 I I (I I I  2 0 0  2.00 

7 I) x on .> 23 0 35 II .M 0 28 3.00 3.00 

8 10 7.20 2 K5 120 0 57 0 41 5 00 5.00 

9 J ‘ I I I I  3 5 1  0 1 5  024  0.14 3.00 3 0 0  

10 8 OM1 2‘18 1.07 0 5 6  0 4 2  4.00 5 00 

I 1  8 780  4.44 0 1 2  0 2 1  0.12 2.00 2 0 0  

12 6 8.90 5 05 0 68 0 4R 0.29 2.00 2.00 

13 i i  10.20 2 3 5  I 27 069  0 4 6  5.00 5.00 

14 5 I470 1296 0 3 1  0 3 2  0 2 7  2 0 0  3.00 

15 4 5 20 5 28 0.32 0 2 3  0.23 2.00 2.00 

16 16 4.70 3 55 0 50 o 18 0.11 2.00 4.00 

17 3 060  268 0.30 0 8 8  0.16 3.00 3.00 

18 3 6.40 4 83 0.10 0 12 0.09 2 0 0  2.00 

19 5 14.20 10 I I  0 60 0 6 9  1147 2.00 5 0 0  

20 3 RNI -163 0 9 2  0 4 3  0.30 300 5.00 

mn 9 0 5  5 3 1  0 5 1  o 4 n  1127 2.80 3 3 0  

sd 2 7 2  2 9 7  036  0.18 0 12 1.01 1 2 6  

in the range of [(l -fi)xMedian, ( 1  +fi)xMedian], then the 
current class is dropped for /3 = 0.2. 

5) Step 5. Create DurClasses: This step is implemented in 
a similar way to Step 4), for the duration measure, where j3 = 
0.2. 

Usually 20 MUAP sets are collected, and the mean and 
the standard deviation of the seven parameters are computed 
to structure a 14-input feature vector. MUAP waveforms and 
parameters of a normal subject are given in Table I. At the 
bottom of Table I, the feature vector supplied to the ANN 
models to provide automated EMG diagnosis is shown. 

E. Artijicial Neural Network Models 

Two paradigms for training ANN models were investigated, 
supervised, and unsupervised. For supervised learning, the 
well-known back propagation algorithm [19], and for unsu- 
pervised learning, the self-organizing feature maps algorithm 
[20] were implemented. Neural network model results obtained 
with supervised and unsupervised learning paradigms are 
given in Sections V and VI, respectively. These findings are 
compared with the results that were given by the K-means 
nearest neighbor clustering algorithm [21] given in Section IV. 

F. Classijier Performance Metrics 

For comparing the results that were obtained by the various 
classification systems, common classifier performance metrics 
have been used [22]. For a given decision suggested by a 
certain output neuron, four possible alternatives exist; true 
positive (TP), false positive (FP), true negative (TN), and 
false negative (FN). In our study, a TP decision occurs when 
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TABLE 11 
MUAP STATISTICS FOR THE NOR, MND, AND M Y 0  GROUPS 

SpDur 

NOR 9.69 2.64 5.39 2.40 

MND 320 13.10 3.56 6.59 3.00 

M Y 0  280 7.14 1.91 4.29 I57 

mn sd mn sd 

2.6 0.7 3.0 1.0 

3.8 1.44 4.45 1.94 

2.7 0 9 3.3 1.2 

the positive diagnosis of the system coincides with a positive 
diagnosis according to the physician. An FP decision occurs 
when the system made a positive diagnosis that does not 
agree with the physician. A TN decision occurs when both 
the system and the physician suggest the absence of a positive 
diagnosis. An FN decision occurs when the system made a 
negative diagnosis that does not agree with the physician. 
From these four measures, the following percentages have 
been calculated for the N cases in the evaluation set: 

%CC/s = 100 x (TI‘ + TN)/N 
O/;,FP’s = 100 x FP/(TN + FP) 
‘XFN’s = 100 x FN/(TP + FN). 

Also, the sensitivity SE (likelihood that an event will be 
detected given that it is present), specificity SP (likelihood 
that the absence of an event will be detected given that it 
is absent), recall RE (number of positive diagnoses correctly 
made by the system, divided by the total number of positive 
diagnoses made by the physician, where N R ~ ~ D  and N ~ l l - 0  
are the number of MND and M Y 0  cases, respectively), and 
precision PR (number of negative diagnoses correctly made by 
the system, divided by the total number of negative diagnoses 
made by the physician) are computed as follows: 

SE = 100 x TP/(TI’ + FN)  
SP = 100 x TN/(TN + FP) 
RE = 100 x TP/(JJ~IND + N51l-o) 
I‘R = 100 x TP/(TP + FP). 

111. MATERIAL 

Neuromuscular diseases are a group of disorders which in- 
volves the motor nuclei of the cranial nerves, the anterior horn 
cells of the spinal cord, the nerve roots and spinal nerves, the 
peripheral nerves, the neuromuscular junction, and the muscle 
itself [23]. These disorders cause muscular weakness and/or 
wasting. From the large number of neuromuscular disorders 
that have been identified, two groups have been selected for 
this study, as their consistency of clinical appearance is good. 
These are motor neuron disease and myopathy. 

Motor Neuron Disease (MND) is a disease causing selec- 
tive degeneration of the upper and lower motor neuron. 
This disease affects middle- to old-aged people, with 
progressive widespread loss of motor neurons usually 
leading to death within three to five years. In the advanced 
stages of this disease, large motor units also denervate. 
Motor unit potentials with duration values that are longer 
than normal and with increased amplitude are typical 

findings in MND. Their occurrence reflects an increase 
in the number or density of fibers in motor units, or 
increased temporal dispersion of the activity picked up 
by the recording electrode. The latter effect is the result 
of slowed conduction along the terminal branches of 
individual nerve fibers, or increase in the end-plate zone, 
or both. 
Myopathies (MYO) are a group of diseases that affect 
primarily skeletal muscle fibers and are divided into 
two groups, according to whether they are inherited 
or acquired. Most muscular dystrophies are hereditary, 
causing severe degenerative changes in the muscle fibers. 
In this group of diseases, there are four main types 
of muscular dystrophy namely Duchenne’s, Backer’s, 
fascioscapulohumeral, and limb girdle. They show a 
progressive clinical course from birth or after a variable 
period of apparently normal infancy. One of the most 
frequently acquired myopathies is polymyositis, which 
is characterized by acute or subacute onset with muscle 
weakness progressing slowly over a matter of weeks. 
MUAP’s with short duration and reduced amplitude are 
typical findings in patients suffering from myopathy. 
These findings are attributed to fiber loss within the motor 
unit, with the degree of reduction of these parameters 
reflecting the amount of fiber loss [24]. 

In this study, a total of 880 MUAP’s were collected from 
the biceps brachii muscle from 14 normals, 16 MND, and 
14 M Y 0  subjects. Diagnostic criteria for the subjects se- 
lected were based on clinical opinion, biochemical data, and 
muscle biopsy. Only subjects without a history or signs of 
neuromuscular disorders were included in the normal group. 
Furthermore, the biceps brachii muscle was examined because 
it is a proximal muscle of the shoulder girdle that is usually 
affected at an early stage in both MND and MYO. Also, its 
easy accessibility has made it attractive to study and widely 
reported in the literature. 

MUAP findings for the three groups under consideration are 
given in Table 11. Mean and standard deviation of duration of 
normal subjects are 9.69 f 2.64 ms and mean and standard 
deviation of amplitude is 0.37 f 0.28 mV. Myopathy patients 
usually have MUAP’s with short duration, low amplitude, and 
small number of phases, whereas MND patients have MUAP’s 
with long duration, high amplitude, and a large number of 
phases. A 2-D scatter plot of the parameters, mean duration, 
and mean amplitude for each subject is also given in Fig. 3 .  
The complexity of the data under investigation, as illustrated in 
Fig. 3, shows that no clear boundaries enclosing each group 
can be drawn. 
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for each subject 

Two-dimensional scatter plot of mean duration and mean amplitude 

Twenty-four of the 44 cases in this study have been ran- 
domly selected to form the training set (eight subjects from 
each group), and the remaining 20 subjects were used for 
evaluating the performance of the models after training. The 
selection was random, i.e., no criteria were used for assigning a 
subject either to the training set or to the evaluation set. These 
sets were used for cluster analysis and for training the back 
propagation and the Kohonen's self-organizing feature maps 
models. The mean and the standard deviation of the seven 
parameters (duration, spike duration, amplitude, area, spike 
area, number of phases, and number of turns) for each subject 
were used to structure a 14-input feature vector to be supplied 
to the learning systems. It has recently been shown that models 
trained with both the mean and the standard deviation of the 
EMG parameters produced better results than models trained 
with only the mean of the parameters [25]. It was concluded 
that the standard deviation contributes significantly to the 
learning process. 

IV. EMG CLUSTER ANALYSIS 
FINDINGS WITH THE K-NN ALGORITHM 

The K-means cluster analysis algorithm was applied on 
the training set of pattems to find cluster centers that can 
be related to disease groups. The cluster centers can be used 
for checking whether a patient of unknown classification falls 
into one of the prescribed classes. The algorithm is based on 
the minimization of a performance index that is the sum of 
the squared distance from all points in a cluster domain to 

the cluster center. The behavior of the K-means algorithm 
is influenced by the number of cluster centers specified, the 
choice of initial cluster centers, the order in which the samples 
are taken, and the geometrical properties of the data [21]. In 
most practical cases, the application of this algorithm requires 
experimenting with various values of K and different choices 
of starting configurations. In this study, cluster analysis was 
carried out on different combinations of MUAP parameters as 
given in Table 111. For model 1, where only the duration feature 
was used to describe each subject, %CC's for the training and 
evaluation sets performance were 83 and SO%, respectively. 
A similar performance was obtained for model 2 when the 
duration and amplitude parameters were used. In model 3 ,  the 
parameters duration, amplitude, and phases were used with 
K = 3 (where K is the number of clusters). This model gave 
poor performance. In this model, cluster 3 has been assigned 
only to patient MND1. This patient can be considered as an 
outlier, as it defines its own cluster. However, in model 4, the 
same parameters were used but K was set equal to four. The 
percentage of correct classifications increased to 83 and SO%, 
for the training and evaluation sets respectively. One cluster 
was assigned to patient MNDl and the other three clusters to 
the normal, MND, and myopathy groups. Poor performance 
was also obtained with model 5, where the means of the seven 
MUAP parameters were used for generating three clusters. 
Using the same feature set as in model 5 but for K = 4, the 
percentage of correct classifications increased to 83% for the 
training set and 80% for the evaluation set, shown by model 
6. Furthermore, it was decided to exclude patient MNDl from 
the training set, model 7, and run cluster analysis for K = 3. 
The percentage of correct classifications performance for this 
model was 86 and SO%, for the training and evaluation sets 
respectively. 

Cluster analysis results for the 14 input models where the 
mean and standard deviation of the seven MUAP parameters 
were used are given in Table IV. Diagnostic performance was 
poor for models 1-3. Comparing models 1 and 2 where the 
only difference is that in model 2, the number of iterations 
was increased from 50 to 100, training and evaluation set's 
performance remained unchanged. In model 3, input data was 
transformed to its standardized scores; the mean of the feature 
vector was subtracted from the sample and divided by the 
feature vector standard deviation. As shown in Table IV, the 
transformed input data has not helped the K-means algorithm 



PATTICHIS et d.: NEURAL NETWORK MODELS IN EMG DIAGNOSIS 

No. of inputs Comments I* K 

1 I4 50 3 

2 14 100 3 

i 14 S t a n d a r d i d  data sa 3 

4 14 Patient MNDl excluded SO 3 

49 I 

Training Evaluation 

%CCs %CC3 %FPs %FNs SE SP RE PR 

58 55 17 57 43 83 43 86 

58 55 17 57 43 83 43 86 

so 60 14 54 46 86 43 86 

87 85 0 21 79 100 79 100 

Number of 

TABLE V 
NEURAL NETWORK BACK PROPAGATION EMG MODELS 

Model Architmure Weights Gain Momentum Epochs Tss 
0 (a) 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

14-10-5-3 

14-10-5-3 

14-10-5-3 

14-10-5-3 

14-40-10-3 

1440-10-3 

14-40-10-3 

14-llx)-10-3 

14- 100- 10-3 

14-100-10-3 

205 on1 
205 001 

205 005 

20s 0 1  

990 001 

y90 0 1  

990 05 

2430 001 

2430 0.1 

2430 05 

0 01 

01 

05 

05 

0 01 

0 1  

05 

0 01 

0 1  

05 

17316 

15745 

1867 

1333 

3745 

392 

136 

2940 

279 

81 

0 89 

0 89 

0 89 

066 

0 89 

086 

0 89 

0 89 

0 89 

0 ~9 

*Measured on an NCR 3445 PC486 machine running at 33 MHz 

Training Tie'  
( m n 4  

One qmch Told 

0 124 2147 

0 124 1952 

0124 231 

0 124 165 

0529 1981 

0529 207 

0529 72 

13 3822 

13 363 

I 3  105 

to improve its performance. The performance of model 4 
improved when patient MNDl was excluded from the data 
set and K was set to three. For the 14 input feature vector, 
the K-means cluster analysis resulted in poorer diagnostic 
performance for both the training and evaluation sets compared 
to those of the neural network models, as discussed in the 
following two sections. 

V. NEURAL NETWORK BACK PROPAGATION EMG MODELS 

The results of the back propagation neural network models 
trained with the back propagation learning algorithm are 
summarized in Table V. The ANN architectures are expressed 
as strings showing the number of inputs, the number of nodes 
in the first hidden layer, the second hidden layer, and the output 
layer, respectively. For all models, the number of inputs is 
14 and the number of outputs is three, corresponding to the 
three groups; NOR, MND, and MYO. Taking into account the 
problem under consideration, ANN architectures with three 
layers were used, as these models have been documented as 
able to draw the boundaries of arbitrarily complex decision 
regions [17]. The number of weights, the gain or learning 
rate 1, momentum a, and training time are tabulated for 
each model. During the training phase, an error measure of 
the closeness of the weights to a solution can be calculated 
for each pattern (14 input feature vector) that represents a 
subject in the training set. This measure is used for determining 
whether a certain subject has been learned by the system, and 

Evaluation 

%CCs IFF'S %FNs SE SP RE PR 

85 0 21 79 

85 0 21 79 

85 0 21 79 

80 17 21 79 

90 0 1 4 8 6  

90 0 14 86 

85 0 21 79 

90 0 14 86 

90 0 14 86 

90 0 1 4 %  

100 

100 

100 

83 

100 

100 

100 

100 

100 

100 

79 loo 

79 100 

79 100 

79 91 

86 100 

86 ion 
79 100 

86 100 

86 100 

86 100 

it is defined by 

where 
PSS: Pattern sum of squares. 
M :  
ye: Calculated output. 
de: Desired output. 
The PSS measure is then summed over all patterns to get 

Number of output nodes (three in this case). 

the total sum of squares or TSS measure 

P M  

m-ie-l 
TSS = x ( y d  - d d ) 2  m = 1 . .  . . . p  ( 2 )  

where p is the number of training patterns (24 in this case). 
The error measure TSS is usually plotted against the number 

of epochs for showing the learning performance of the model 
under study. During the learning phase for one epoch, all 
the 24 patterns were applied at random to the neural net 
model. Learning was achieved when the value of TSS got very 
small. For the back propagation models examined, training 
was stopped when the value of TSS dropped below 0.9. For 
TSS = 0.9, and number of patterns = 24, P S S  = 0.9124 
= 0.0375, on average. For each output node, average error 
= PSSl3 = 0.037513 = 0.0125. The square root of 0.0125 
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= 0.1 118, which gives the average error estimated for each 
node. The diagnostic performance of the evaluation set was 
carried out using the classifier performance metrics given in 
Section 11. Percentage of correct classifications, %CC’s, for all 
the models in the training set was 100%. 

For the models given in Table V, each parameter of the 
14-input feature vector was divided by the mean value of 
the parameter obtained for the 24 patterns in the training set. 
Preprocessing of data was carried out on all the patterns of both 
the training and evaluation sets. A large number of models was 
investigated for ascertaining how the size of the architecture, 
the gain 71, and momentum (1 coefficients contribute to the 
overall performance of a diagnostic model during and after 
the training phase. At present, no method other than empirical 
has been proposed for choosing the architecture, 7,  and 0 for 
training feedforward neural networks. Models studied showed 
that learning of the training set does not necessarily guarantee 
successful diagnostic behavior on the evaluation set. All the 
models presented in Table V reached a TSS value below 0.9 
and 100% CC’s for the training set, with the %CC’s for 
the evaluation set varying between 80 and 90%. The best 
performance was obtained by those models whose first hidden 
layer had 40 neurons or more, being the minimum number 
required for achieving a good diagnostic yield for both the 
training and evaluation sets. It was not difficult to design a 
model that learned to identify correctly the 24 patterns of the 
training set; all the models of Table V could do so. It was not 
easy, however, to achieve generalization, i.e., the capacity of 
a neural net to correctly classify unknown cases based on the 
knowledge that was captured during the training phase. 

The set of models 1, 2, 3, and 4 with architecture 14-10-5-3 
yielded %CC’s between 80 and 85%, as shown in Table V. 
Comparing models 1 and 2, which were both trained with q = 
0.01 and a = 0.1 and 0.01, respectively, similar learning and 
diagnostic performance was obtained. When both the gain q 
and momentum a were increased, as in the case of model 3, 
faster learning was achieved, with the number of epochs being 
considerably reduced from 15 745 for model 2 to 1867 for 
model 3. However, for model 4 where q was set even higher 
(0. l), learning was achieved at a similar number of epochs but 
with significant oscillatory behavior. In addition, %CC’s for 
the evaluation set dropped to 80%. Models 5 ,  6, and 7 have 
the same architecture, 14-40-10-3, but they were trained with 
different q and a. It is illustrated again that for higher values of 
r/ and a,  fewer epochs are required for learning. The learning 
curves for these models are shown in Fig. 4(a), where the 
oscillatory behavior of model 7 is clearly shown. Model 7, in 
addition to the oscillatory behavior, yielded in a poorer %CC’s 
score for the evaluation set. Models 8-10 resulted in %CC’s 
= 90, %FP’s = 10, and %FN’s = 14. Fig. 4(b) shows the 
learning behavior and the effect of q and a for these models. 
Evidently, larger architectures can handle high values of 7 and 
cy without affecting the diagnostic performance of the models, 
as illustrated by model 10. 

Models with small architecture, shown in Table V, required 
more epochs during training, thus were more demanding 
in computation time; however, for models with bigger ar- 
chitecture, the number of epochs and training time were 
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Fig. 4. 
Models 5. 6, and 7. (b) Models 8, 9, and IO. 

Learning curves for back propagation EMG models of Table V. (a) 

reduced. Furthermore, a lower number of epochs and reduced 
training time were the result of increased values in gain and 
momentum. 

The models shown in Table V were obtained by training the 
neural network models with preprocessed input data. In gen- 
eral, these models yielded a higher correct classifications score 
than the back propagation models trained with nonprocessed 
data [ 181. In addition, models of Table V have comparatively 
lower architectures and required a lower number of epochs for 
training, thus less computational effort. 

An important issue that characterizes the overall perfor- 
mance of the back propagation models presented in Table V 
regarding subject classification is consistency. Consistency can 
be addressed in two directions: 

Of all the models that resulted in the same %CC’s, 90% 
failed to correctly classify the same subjects in all the 
neural network models. For example, models 5, 6, 8, 
9, and 10 of Table V misclassified MND14 as normal 
and MY09 as normal. This fact is also revealed by the 
consistency of the performance metrics. 
All the models that resulted in 85% CC’s incorrectly 
classified subjects MND14 and MY09 as normals, as 
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TABLE VI 
SELF-ORGANIZING FEATURE MAP EMG MODELS 

No. of No. of Output Gain 
Model Inputs Classes Grid fador Epochs 

I 14 1 

2 14 3 

3 14 3 

4 14 7 

5 14 3 

6 14 3 

7 14 3 

8 14 3 

9 14 3 

1 (I 14 ? 

11  14 3 

12 14 3 

0 09 

0 5  

0 9  

009 

0 5  

0 9  

009 

0 5  

0 9  

009  

0 5  

0 9  

1550 

1550 

630 

1550 

1550 

630 

1550 

1550 

630 

1550 

1550 

630 

Training time’ 

Onecpoch Total 

0l170 108 

0070 108 

0070 44 

0 112 174 

0112 174 

0 112 71 

0 I93 301 

0.194 301 

0194 122 

0 250 387 

0250 387 

0250 157 

“Measured on an NCR 3445 PC486 machine running at 33 MHz 

was the case with the above-mentioned models. In 
addition, they misclassified patient MNDlO as being 
normal. 

Subjects MND10 and MND14 both have typical motor neu- 
rone disease with bulbar involvement but with less severe 
involvement of the biceps muscle. Subject MY09 suffers 
from polymyositis myopathy. This disease may have foci of 
inflammation (i.e., areas of muscle distraction) that may not 
have been picked up in the EMG study. 

VI. SELF-ORGANIZING FEATURE MAP EMG MODELS 

The neural network models in this system were derived 
using the Kohonen’s self-organizing feature maps algorithm. 
With this algorithm the training process involves the presen- 
tation of pattem vectors from the training set one at a time. 
A winning neuron (node) is selected in a systematic way after 
all input vectors are presented. A weight adjustment process 
takes place by using the neighborhood concept that shrinks 
over time and a learning coefficient that also decreases with 
time. After several input vectors are presented, weights will 
form clusters or vector centers that sample the input space 
such that the point density function of the vector centers tends 
to approximate the probability density function of the input 
vectors [20]. The weights will also be organized such that 
topologically close output nodes are sensitive to inputs that 
are physically similar. Thus, the output nodes will be ordered 
in a natural way. 

The results of the self-organizing feature map models that 
were investigated with no preprocessing of the 14 input feature 
vector are summarized in Table VI. Models with output grid 
size: 6 x 6, 8 x 8, 10 x 10, and 12 x 12 were developed. 
Three different initial gain factors were used with each grid 
size: 0.09, 0.5, and 0.9. Training for self-organizing feature 
map EMG models was carried out for 1550 epochs, except 
for models with gain = 0.9 where the training was stopped 
at 630 epochs. At each training cycle (epoch), the 24 input 
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pattems were presented at random. It was observed that grid 
sizes below 6 x 6 were inadequate for producing models with 
well-separated classes. Models 1 and 2 of Table VI which 
were trained with gain = 0.09 and 0.5, respectively, could not 
correctly classify all the cases in the training set, both giving 
91% CC’s. However, model 3, with a 6 x 6 output grid and 
gain = 0.9 managed to correctly classify all the subjects in 
the training set in 630 epochs. Models with output grid size: 
8 x 8, 10 x 10, and 12 x 12, could correctly classify all 
cases in the training set, irrespective of gain factor. Models 4, 
5 ,  and 6 were trained with an 8 x 8 output grid and resulted 
in 80%, 85%, and 80% diagnostic yield, respectively. Models 
7-12 resulted in 85% diagnostic yield. 

The procedure that was followed for assigning disease 
classes to the self-organizing feature maps is presented here. 
For every 14 element feature vector 

where N is the number of patterns in the training set, there is 
an output node at the grid for which maximum response R,,,, 
is caused. This node is assigned the class number of the vector 
(1 = NOR, 2 = MND, 3 = MYO) and the subject number. 
Fig. 5(a), which expresses model 3 of Table VI, shows the 
nodes where maximum response was caused by the subjects 
in the training set after the completion of the training phase. 
Nodes with “0 0” values have not been assigned to any class. 
For this example where the output grid is 6 x 6 (36 output 
nodes) with a training set of 24 patterns, at least 12 nodes 
will not be assigned to any pattern. This means that unknown 
patterns falling on “0 0 ’  nodes will not be diagnosed. 

During the next phase, the “0 0’ nodes are assigned to one 
of the classes as follows: the data of each subject in the training 
set is applied at the input, and the response at a certain “0 0 ’  
node is observed 

(4) 
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k 

/II 

(e) 

Fig. 5 Self-organizing feature maps of model 3 Table VI (a) Maximum 
response map Legend 1 3 NOR subject number 3, 0 0 unassigned node (bj 
Maximum response map with all nodes assigned Legend: 2 7 MND subject 
number 7 (c) Simplified map showing only the classes Legend: 1 = NOR, 
2 = MND, 3 = M Y 0  (d) Maximum response map for the training set. 
Legend 1 1 3’ NOR subject number 3 caused maximum response at that 
node ( e )  Maximum response map for the evaluation set Legend 1 1 IO’ 
NOR subject number I O  is diagnosed correctly, 1 3 9’ M Y 0  subject number 
9 is diagno\ed as NOR 

The class of the subject that causes maximum response 
R,,,,, at the node is assigned to the node. This procedure is 
applied for all the “0 0” nodes until all of them are assigned to 
a class. Algorithmically, the above procedure can be described 
as follows: 

1) For the “0 0” node c under investigation, compute the 
response vector R,; 

2) Select the feature vector 2, that gives maximum re- 
sponse R,,,,; get its class k,; 

3 )  Assign the class k, to the node under investigation; 
4) Repeat for the next “0 0’ node. 
The above procedure was applied to the map in Fig. 5(a) 

of model 3 and the resulting map is shown in Fig. 5(b). A 
simplified version of the map in Fig. 5(b) is shown in Fig. 5(c) 
where only the class type is shown. The map in Fig. 5(d) 
is an integration of the maps in Fig. 5(a) and (b). In this 
figure, the nodes marked with an “*” are the nodes where 
the subjects in the training set caused maximum response; for 

example, node “2 2 4*” means that the node is of class 2 ,  
i.e., (MND), and that the 4th MND patient caused maximum 
response at this node. The diagnosis of the unknown cases in 
the evaluation set is carried out by applying the 14 element 
vectors of each subject at the input of a trained neural network 
model and observing where on the grid the maximum output is 
caused; the class of the node denotes the diagnostic finding of 
the system. Correct classification and diagnosis is ascertained 
when a subject in the evaluation set causes maximum output 
at a node that belongs to the same class as that of the subject. 
In Fig. 5(e), the maximum response mapping of the subjects 
in the evaluation set is shown with an “*.” For example, 
node “1 1 lo*” indicates that it belongs to class 1 (NOR) 
and that subject NOR10 caused maximum response at this 
node; thus, this subject was correctly diagnosed. However, “1 
3 9*” indicates that the node belongs to the normal class and 
that patient “3 9” (MY09) was diagnosed as normal, thus 
incorrectly diagnosed. 

Regarding the consistency of the self-organizing feature map 
models, it was found that all models with 85% diagnostic 
yield misclassified patients MND10, MND14, and MY09 as 
normals, %W’s = 0, and %FN’s = 21. All models with 80% 
diagnostic yield erroneously classified MND10, MND 14, and 
MY09  as normals and, in addition, they misclassified NOR1 1 
as myopathic with %FP’s = 17, and %FN’s = 21. 

The self-organizing feature maps system compared to the 
back propagation neural network system has the advantage 
of the results being presented pictorially. For example, in 
Fig. 5(e), row 6, column 2, “2 2 11*,” indicates that patient 
MND11 was correctly diagnosed. With this system one can 
easily relate a certain patient with another patient, find bound- 
ary cases, and observe the mapping of a patient over serial 
examinations. Training effort for the self-organizing feature 
map models was significantly reduced as compared to the 
momentum back propagation models, see Tables V and VI. 

VII. CONCLUSIONS 
Neural network EMG diagnostic models in conjunction 

with quantitative analysis provide an integrated solution to 
the problem of automated EMG evaluation. This approach is 
very desirable because it minimizes observer bias, facilitates 
comparison of results across individuals and different method- 
ologies, and more importantly, provides useful information 
for helping the physician in reaching a more accurate diag- 
nosis. It should be emphasized that if the disease process is 
advanced and the electrophysiological abnormalities are many 
and obvious, although automated EMG analysis might be of 
less importance diagnostically, it may be useful for detecting 
and characterizing changes on a series of examinations [26]. 
On the other hand, the application of computer-aided EMG 
analysis is very important in detecting pathology in those 
early or mild cases of a disease where the electrophysiological 
abnormalities are relatively slight and may escape accurate 
diagnosis. In this paper, we have presented how artificial 
neural network models can be applied in the assessment 
of patients suffering with neuromuscular disorders based on 
EMG. The diagnostic performance of neural network models 
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investigated iS on the order of SO-90% for models trained 
with the back propagation algorithm and 80% for models 

gorithm. The K-means cluster analysis algorithm gave poorer 

[SI E. Stalberg, S. Andreassen, B. Falck, H. Lang, A. Rosenfalck. and W. 
Trojabog, “Quantitative analysis of individual motor unit potentials: A 
proposition for standardized terminology and criteria for measurement,” 

[6] K. J. Blinowska; I .  Hausmanowa-Petrusewicz, A. Miller-Larsson, and 
trained with the Kohonen’s self-organizing feature maps al- 

J ,  Clin, Neurophphvsiol,, 3, no, 4, pp, 313-348, 1986, 
- -  

performance. 
Neural network EMG models trained with the individual 

parameters for each MUAP set forming a 140 input feature 
vector (20 MUAP sets x seven parameters) were also studied 
[27] for the same group of patients. Comparing 14 input and 
140 input ANN models, it can be concluded that although 
both sets of models achieved a similar diagnostic performance, 
the 14 input models require a considerably higher number of 
epochs to achieve learning. Recently, Genetics Based Machine 
Learning (GBML) models have been developed to classify 
normal, MND, and myopathy subjects based on EMG data 

J. Zachara, “The analysis of single EMG potentials by means of 
multivariate methods.” Electromyogr. Clin. Neurophysiol., vol. 20, pp. 
105-123, 1980. 

[7] J. L. Coatrieux, P. Toulouse, B. Rouvrais, and R. Le Bars, “Automatic 
classification of electromyographic signals,” EEG Clin. Neurophysiol., 
vol. 55,  pp. 333-341, 1983. 

[8] B. Rouvrais, P. Toulouse, J. L. Coatrieux. and R. Le Bars, “A possible 
method of automatic electromyographic analysis and diagnosis on line,” 
Electmmyogr. Clin. Neurophwiol.. vol. 23, pp. 457470,  1983. 

[9] P. Toulouse, J. L. Coatrieux. and B. Le Marec, “An attempt to dif- 
ferentiate female relatives of Duchenne type dystrophy from healthy 
subjects using an automatic EMG analysis.” J .  Neurolog. Sei.. vol. 67, 
pp. 45-55, 1985. 

[IO] S. K. Andersen, S.  Andreassen, and M. Woldbye, “Knowledge represen- 
tation for diagnosis and test olanning in the domain of EMG.” in  Proc. 

[ 2 8 ] .  Diagnostic performance of GBML and neural network 
back propagation and self-organized feature map models was 
found to be similar. However, training effort for GBML 

7th Eur. Cor$ Artijcicrl 1ntell.. Brighton. U.K., pp. 357-368, 1986. 
[ I  I ]  S. Andreassen, S. K. Andersen, F. V. Jensen, M. Woldbye, A. Rosen- 

falck, B. Falck, U. Kjaerluff, and A. R. Sorensen, “MUNIN-An expert 
system for EMG,” E/rctromcc,ph. Clin. Neurophvsiol., vol. 66, no. S4, . .  

models was reduced as compared to both the back propagation 
and the self-organized feature maps ANN models. 

i987. 
[I21 S. Andreassen, F. Jensen. S. K. Andersen, B. Falck, U. Kjaerulff, M. 

Woldbye, A. R. Sorensen, A. Rosenfalck, and J. Frank, “MUNIN-An 
expert EMG assistant,” in Compurrr Aided Elec,tromygrciphy and  EL^- Future work should take into account the severity of the 

disease (mild, moderate, severe, and chronic states), another 

thermore, data from more patients, more muscles, and more 

pert Systerns, J. E. Desmedt, Ed. 
ers B.V., 1989, pp. 255-277. 

system for diagnosing neuromuscular disorders,” in Commter Aided 

New York: Elsevier Science Publish- 

aspect Of EMG diagnosis that needs to be investigated’ Fur- 
[ 131 A, FugIsang-Frederiksen and S,  M. Jeppesen, “A EMG expert 

- -  
neuromuscular diseases have to be included in the system. 

to neurophysiological findings, is based on patient’s clinical 

Electrornyogrcrphy and Expert Sy.stem.r, J .  E. Desmedt, Ed. 
Elsevier Science Publishers B.V., 1989, pp. 289-296. 

diagnose expert system for EMG: KANDID,” J .  Neurolog. Sci.. vol. 

New York: 

However, diagnosis Of neuromuScular diseases, in addition 
[ 141 A, Fuglsang-Frederiksen, J. Ronager, and S, Vingtoft, “A plan-test- 

assessment, muscle biopsy, biochemical findings, and genetic 
and molecular genetic findings. Presently, no expert system 
or any other intelligent system exists for the diagnosis of 
neuromuscular disorders taking into account all of the above 
disciplines. It is suggested that the ultimate goal would be to 
develop a multidiscipline computer-aided system for medical 
diagnosis of these disorders. The system should be able to 
process data in the form of images, signals, measurements, 
signs, and symptoms. Such a system could be developed based 
on procedures applied in the early and accurate diagnosis of 
the clinical types and stages of neuromuscular disorders, their 
clinical subtypes, and variants. 
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