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Comparative Evaluation of Despeckle Filtering
In Ultrasound Imaging of the Carotid Artery
Christos P. Loizou, Constantinos S. Pattichis, Senior Member, IEEE, Christodoulos I. Christodoulou,

Robert S. H. Istepanian, Senior Member, IEEE, Marios Pantziaris, and Andrew Nicolaides

Abstract—It is well-known that speckle is a multiplica-
tive noise that degrades the visual evaluation in ultrasound
imaging. The recent advancements in ultrasound instru-
mentation and portable ultrasound devices necessitate the
need of more robust despeckling techniques for enhanced
ultrasound medical imaging for both routine clinical prac-
tice and teleconsultation. The objective of this work was
to carry out a comparative evaluation of despeckle filtering
based on texture analysis, image quality evaluation met-
rics, and visual evaluation by medical experts in the as-
sessment of 440 (220 asymptomatic and 220 symptomatic)
ultrasound images of the carotid artery bifurcation. In this
paper a total of 10 despeckle filters were evaluated based
on local statistics, median filtering, pixel homogeneity, ge-
ometric filtering, homomorphic filtering, anisotropic diffu-
sion, nonlinear coherence diffusion, and wavelet filtering.
The results of this study suggest that the first order statis-
tics filter lsmv, gave the best performance, followed by the
geometric filter gf4d, and the homogeneous mask area fil-
ter lsminsc. These filters improved the class separation be-
tween the asymptomatic and the symptomatic classes based
on the statistics of the extracted texture features, gave only
a marginal improvement in the classification success rate,
and improved the visual assessment carried out by the two
experts. More specifically, filters lsmv or gf4d can be used
for despeckling asymptomatic images in which the expert
is interested mainly in the plaque composition and texture
analysis; and filters lsmv, gf4d, or lsminsc can be used for
the despeckling of symptomatic images in which the expert
is interested in identifying the degree of stenosis and the
plaque borders. The proper selection of a despeckle filter is
very important in the enhancement of ultrasonic imaging
of the carotid artery. Further work is needed to evaluate
at a larger scale and in clinical practice the performance
of the proposed despeckle filters in the automated segmen-
tation, texture analysis, and classification of carotid ultra-
sound imaging.

I. Introduction

The use of ultrasound in the diagnosis and assessment
of arterial disease is well established because of its

Manuscript received January 8, 2005; accepted April 22, 2005.
C. P. Loizou is with the Department of Computer Sci-

ence, Intercollege, CY-3507 Limassol, Cyprus (e-mail: christosl@
lim.Intercollege.ac.cy).

C. S. Pattichis is with the Department of Computer Science, Uni-
versity of Cyprus, Nicosia, Cyprus.

C. I. Christodoulou, M. Pantziaris, and A. Nicolaides are with the
Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

A. Nicolaides also is with the Department of Vascular Surgery,
Imperial College London, UK.

R. S. H. Istepanian is with the Mobile Information and Network
Technologies Research Center, School of Computing and Informa-
tion Systems, Kingston University, Kingston-Upon-Thames, London,
UK.

noninvasive nature, its low cost, and the continuing im-
provements in image quality [1]. Speckle, a form of lo-
cally correlated multiplicative noise corrupts medical ul-
trasound imaging making visual observation difficult [2],
[3]. The presence of speckle noise in ultrasound images has
been documented since the early 1970s when researchers
such as Burckhardt [2], Wagner et al. [3], and Goodman
[4] described the fundamentals and the statistical proper-
ties of the speckle noise. Speckle is not truly a noise in
the typical engineering sense because its texture often car-
ries useful information about the image being viewed. It
is the primary factor that limits the contrast resolution
in diagnostic ultrasound imaging, thereby limiting the de-
tectability of small, low-contrast lesions and making the
ultrasound images generally difficult for the nonspecialist
to interpret [2], [3], [5], [6]. Due to the speckle presence,
ultrasound experts with sufficient experience may not of-
ten draw useful conclusions from the images [6]. Speckle
noise also limits the effective application of image process-
ing and analysis algorithms (i.e., edge detection, segmen-
tation) and display in two-dimensional (2-D) and volume
rendering in 3-D. Therefore, speckle is most often consid-
ered a dominant source of noise in ultrasound imaging and
should be filtered out [2], [5], [6] without affecting impor-
tant features of the image. The objective of this paper was
to carry out a comparative evaluation of despeckle filtering
techniques based on texture analysis, image quality eval-
uation metrics, and visual assessment by experts on 440
ultrasound images of the carotid artery bifurcation. Pre-
liminary results of this study were published in [7] and [8].

The wide spread of mobile and portable telemedicine ul-
trasound scanning instruments also necessitates the need
for better image processing techniques in order to offer
a clearer image to the medical practitioner. This makes
the use of efficient despeckle filtering a very important
task. Early attempts to suppress speckle noise were imple-
mented by averaging of uncorrelated images of the same
tissue recorded under different spatial positions [5], [9],
[10]. Although these methods are effective for speckle re-
duction, they require multiple images of the same object to
be obtained [11]. Speckle reducing filters originated from
the synthetic aperture radar (SAR) community [9]. These
filters have been applied to ultrasound imaging since the
early 1980s [12]. Filters that are used widely in both SAR
and ultrasound imaging include the Frost et al. [13], Lee
[9], [14], [15], and Kuan et al. [11], [16].

Table I summarizes the despeckle filtering techniques
that are investigated in this study, grouped under the
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TABLE I
An Overview of Despeckle Filtering Techniques.

Speckle
reduction
technique Investigator Method Filter name

Local [7]–[14], Moving window using local statistics lsmv
statistics [13]–[16] (a) mean (m), variance (σ2).

[7]–[14] (b) mean, variance, 3rd and 4th moments (higher moments)
and entropy.

[32] (c) Homogeneous mask area filters. lsminsc

[2]–[14], [15] (e) Wiener filtering. wiener

Median [33] Median filtering. median

Homogeneity [8] Based on the most homogeneous neighborhood around homog
each pixel.

Geometric [10] Nonlinear iterative algorithm. gf4d

Homomorphic [2], [17], [18] The image is logarithmically transformed, the FFT is homo
calculated, denoised, the inverse FFT is calculated
and exponentially transformed back.

Anisotropic [2], [5], [12], [13], Nonlinear filtering technique for simultaneously ad
diffusion [19], [20]–[23] performing contrast enhancement and noise reduction.

Exponential damp kernel filters using diffusion.

[24] Coherence enhancing diffusion. nldif

Wavelet [15], [25]–[29], [35] Only the useful wavelet coefficients are used. waveltc

following categories: local statistics, median filtering, ho-
mogeneity, geometric, homomorphic, anisotropic diffusion,
and wavelet filtering. Furthermore, in Table I the main in-
vestigators, the methodology used, and the corresponding
filter names are given. These filters are briefly introduced
in this section, and presented in greater detail in Section II.

Some of the local statistic filters are the Lee [9], [14],
[15], the Frost et al. [13], and the Kuan et al. [11], [16].
The Lee and Kuan filters have the same structure, but the
Kuan is a generalization of the Lee filter. Both filters form
the output image by computing the central pixel intensity
inside a filter-moving window, which is calculated from the
average intensity values of the pixels and a coefficient of
variation inside the moving window. Kuan et al. considered
a multiplicative speckle model and designed a linear filter
based on the minimum-mean-square error (MMSE) crite-
rion that has optimal performance when the histogram of
the image intensity is Gaussian distributed. The Lee [9] fil-
ter is a particular case of the Kuan filter based on a linear
approximation made for the multiplicative noise model.
The Frost et al. [13] makes a balance between the averag-
ing and the all-pass filters. It was designed as an adaptive
Wiener filter that assumed an autoregressive exponential
model for the image.

In the homogeneity group, the filtering is based on the
most homogeneous neighborhood around each image pixel
[8]. Geometric filters [10] are based on nonlinear iterative

algorithms, which increment or decrement the pixel values
in a neighborhood based upon their relative values. The
method of homomorphic filtering [17], [18] is similar to the
logarithmic point operations used in histogram improve-
ment, in which dominant bright pixels are de-emphasized.
In the homomorphic filtering, the fast Fourier transform
(FFT) of the image is calculated, denoised, then the in-
verse FFT is calculated.

Some other despeckle filtering methods, such as
anisotropic diffusion [2], [19], [20]–[23], speckle reducing
anisotropic diffusion [5], and coherence anisotropic diffu-
sion [24], presented recently in the literature, are nonlinear
filtering techniques for simultaneously performing contrast
enhancement and noise reduction by using the coefficient
of variation [5]. Furthermore, in the wavelet category, fil-
ters for suppressing the speckle noise were documented.
These filters are making use of a realistic distribution of
the wavelet coefficients [2], [15], [25]–[30] in which only
the useful wavelet coefficients are used. Different wavelet
shrinkage approaches were investigated, usually based on
Donoho’s work [29].

The majority of speckle reduction techniques have cer-
tain limitations that can be briefly summarized as follows:

• They are sensitive to the size and shape of the win-
dow. The use of different window sizes greatly affects
the quality of the processed images. If the window is
too large, over smoothing will occur, subtle details of
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the image will be lost in the filtering process, and edges
will be blurred. However, a small window will decrease
the smoothing capability of the filter and will not re-
duce speckle noise, thus making the filter not effective.

• Some of the despeckle methods based on window ap-
proaches require thresholds to be used in the filtering
process, which have to be estimated empirically. The
inappropriate choice of a threshold may lead to av-
erage filtering and noisy boundaries, thus leaving the
sharp features unfiltered [7], [10], [14].

• Most of the existing despeckle filters do not enhance
the edges, they only inhibit smoothing near the edges.
When an edge is contained in the filtering window, the
coefficient of variation will be high and smoothing will
be inhibited. Therefore, speckle in the neighborhood of
an edge will remain after filtering. They are not direc-
tional in the sense that, in the presence of an edge, all
smoothing is precluded. Instead of inhibiting smooth-
ing in directions perpendicular to the edge, smoothing
in directions parallel to the edge is allowed.

• Different evaluation criteria for evaluating the per-
formance of despeckle filtering are used by different
studies. Although most of the studies use quantita-
tive criteria such as the mean-square error (MSE) and
speckle index (C), there are additional quantitative
criteria such as texture analysis and classification, im-
age quality evaluation metrics, and visual assessment
by experts that could be investigated.

To the best of our knowledge, there is only one study
that investigated despeckle filtering on ultrasound im-
ages of the carotid artery and proposed speckle reducing
anisotropic diffusion as the most appropriate method [5].
This technique was compared with the Frost et al. [13], Lee
[14], and the homomorphic filtering [18] and documented
that anisotropic diffusion performed better.

In this study, we compare the performance of 10 de-
speckle filters on 440 ultrasound images of the carotid
artery bifurcation. The performance of these filters was
evaluated using texture analysis, the k-nearest neighbor
(kNN) classifier, image quality evaluation metrics, and vi-
sual evaluation by two experts. The results of our study
show that despeckle filtering improves the class separa-
tion between asymptomatic and symptomatic ultrasound
images of the carotid artery.

In the following section, a brief overview of despeckle
filtering techniques is presented. In Section III the method-
ology is presented, covering the material, recording of ul-
trasound images, texture and statistical analysis, the kNN
classifier, image quality evaluation metrics, and the ex-
periment carried out for visual evaluation are described.
Sections IV and V present the results, and discussion, re-
spectively.

II. Despeckle Filtering

In order to be able to derive an efficient despeckle filter,
a speckle noise model is needed. The speckle noise model
may be approximated as multiplicative, if the envelope

signal received at the output of the beamformer of the
ultrasound imaging system is captured before logarithmic
compression and may be defined as:

yi,j = xi,jni,j + ai,j , (1)

where yi,j represents the noisy pixel in the middle of the
moving window, xi,j represents the noise-free pixel, ni,j

and ai,j represent the multiplicative and additive noise,
respectively, and i, j are the indices of the spatial lo-
cations that belong in the 2-D space of real numbers,
i, j ∈ �2. Logarithmic compression is applied to the
envelope-detected echo signal in order to fit it in the dis-
play range [24], [31]. It has been shown that the logarith-
mic compression affects the speckle noise statistics in such
a way that the local mean becomes proportional to the lo-
cal variance rather than the standard deviation [24], [26],
[28], [31] [see also (8)]. More specifically, logarithmic com-
pression affects the high-intensity tail of the Rayleigh and
Rician probability density function (PDF) more than the
low-intensity part. As a result, the speckle noise becomes
very close to white Gaussian noise corresponding to the
uncompressed Rayleigh signal [31]. Because the effect of
additive noise is considerably smaller compared with that
of multiplicative noise, (1) may be written as:

yi,j ≈ xi,jni,j . (2)

Thus the logarithmic compression transforms the model in
(2) into the classical signal in additive noise form as:

log (yi,j) = log (xi,j) + log (ni,j) , (3a)
gi,j = fi,j + nli,j . (3b)

For the rest of the paper, the term log (yi,j), which is the
observed pixel on the ultrasound image display after log-
arithmic compression, is denoted as gi,j , and the terms
log (xi,j), log (ni,j) which are the noise-free pixel and noise
component after logarithmic compression, as fi,j and nli,j ,
respectively [see (3b)].

A. Local Statistics Filtering

Most of the techniques for speckle reduction filtering in
the literature use local statistics. Their working principle
may be described by a weighted average calculation using
subregion statistics to estimate statistical measures over
different pixel windows varying from 3 × 3 up to 15 × 15.
All these techniques assume that the speckle noise model
has a multiplicative form as given in (2) [7]–[15], [24], [26].

1. First Order Statistics Filtering (lsmv, wiener): The
filters using the first order statistics such as the variance
and the mean of the neighborhood may be described with
the model as in (3). Hence, the algorithms in this class
may be traced back to the following equation [5], [7]–[16]:

fi,j = g + ki,j (gi,j − g) , (4)

where fi,j is the estimated noise-free pixel value, gi,j is
the noisy pixel value in the moving window, g is the local
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mean value of an N1xN2 region surrounding and including
pixel gi,j , ki,j is a weighting factor with k ∈ [0..1], and i, j,
are the pixel coordinates. The factor ki,j is a function of
the local statistics in a moving window. It can be found in
the literature [9], [11], [14] and may be derived in different
forms that:

ki,j =
(
1 − g2σ2) /

(
σ2 (

1 + σ2
n

))
, (5)

ki,j = σ2/
(
g2σ2

n + σ2) , (6)

ki,j =
(
σ2 − σ2

n

)
/σ2. (7)

The values σ2 and σ2
n represent the variance in the mov-

ing window and the variance of noise in the whole image,
respectively. The noise variance may be calculated for the
logarithmically compressed image by computing the aver-
age noise variance over a number of windows with dimen-
sions considerably larger than the filtering window. In each
window the noise variance is computed as:

σ2
n =

p∑
i=1

σ2
p/gp, (8)

where σ2
p and gp are the variance and mean of the noise

in the selected windows, respectively, and p is the index
covering all windows in the whole image [24], [25], [31].
If the value of ki,j is 1 (in edge areas) this will result to
an unchanged pixel, and a value of 0 (in uniform areas)
replaces the actual pixel by the local average, g, over a
small region of interest [see (4)]. In this study the filter
lsmv uses (5). The filter wiener uses a pixel-wise adaptive
Wiener method [2]–[6], [13] implemented as given in (4),
with the weighting factor ki,j , as given in (7). For both
despeckle filters lsmv and wiener the moving window size
was 5 × 5.

2. Homogeneous Mask Area Filtering: The lsminsc is a
2-D filter operating in a 5×5 pixel neighborhood by search-
ing for the most homogenous neighborhood area around
each pixel, using a 3 × 3 subset window [32]. The middle
pixel of the 5×5 neighborhood is substituted with the av-
erage gray level of the 3×3 mask with the smallest speckle
index, C, where C for log-compressed images is given by:

C = σ2
s/gs, (9)

where σ2
s and gs represents the variance and mean of the

3×3 window. The window with the smallest C is the most
homogenous semiwindow, which presumably does not con-
tain any edge. The filter is applied iteratively until the gray
levels of almost all pixels in the image do not change.

B. Median Filtering

The filter median [33] is a simple nonlinear operator
that replaces the middle pixel in the window with the
median-value of its neighbors. The moving window for the
median filter was 7 × 7.

C. Maximum Homogeneity Over a Pixel Neighborhood
Filtering

The homog filter is based on an estimation of the most
homogeneous neighborhood around each image pixel [34].
The filter takes into consideration only pixels that belong
in the processed neighborhood (7 × 7 pixels) using (10),
under the assumption that the observed area is homoge-
neous. The output image then is given by:

fi,j = (ci,jgi,j) /
∑
i,j

ci,j , with

ci,j = 1 if (1 − 2σn) g ≤ gi,j ≤ (1 + 2σn) g

ci,j = 0 otherwise.
(10)

The homog filter does not require any parameters or
thresholds to be tuned, thus making the filter suitable for
automatic interpretation.

D. Geometric Filtering

The concept of the geometric filtering is that speckle
appears in the image as narrow walls and valleys. The ge-
ometric filter, through iterative repetition, gradually tears
down the narrow walls (bright edges) and fills up the nar-
row valleys (dark edges), thus smearing the weak edges
that need to be preserved.

The gf4d filter [10] investigated in this study uses a non-
linear noise reduction technique. It compares the intensity
of the central pixel in a 3 × 3 neighborhood with those of
its eight neighbors and, based upon the neighborhood pixel
intensities, it increments or decrements the intensity of the
central pixel such that it becomes more representative of
its surroundings. The operation of the geometric filter gf4d
may be described with Fig. 1 and has the following form:

1. Select Direction and Assign Pixel Values: Select the
direction north-south (NTST) and the corresponding three
consecutive pixels a, b, c [see Fig. 1(a) and (b), respec-
tively].

2. Carry Out Central Pixel Adjustments: Do the fol-
lowing intensity adjustments [see Fig. 1(b)]:

if a ≥ b + 2 then b = b + 1,

if a � b and b ≤ c then b = b + 1,

if c � b and b ≤ a then b = b + 1,

if c ≥ b + 2 then b = b + 1,

if a ≤ b − 2 then b = b − 1,

if a ≺ b and b ≥ c then b = b − 1,

if c ≺ b and b ≥ a then b = b − 1,

if c ≤ b − 2 then b = b − 1.

3. Repeat: Repeat steps 1 and 2 for west-east (WE)
direction, west-north to south-east (WNT-STE) direction,
and north-east to west-south direction (NTE to WST) [see
Fig. 1(a)].
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Fig. 1. (a) Directions of implementation of the gf4d geometric filter.
(b) Pixels selected for the NTST direction (intensity of central pixel
b is adjusted based on the values of intensities of pixels a, b, and c).

E. Homomorphic Filtering

The homo filter performs homomorphic filtering for im-
age enhancement by calculating the FFT of the logarith-
mic compressed image, applying a denoising homomorphic
filter function H(.), then performing the inverse FFT of
the image [17], [18]. The homomorphic filter function H(.),
may be constructed either using a band-pass Butterworth
or a high-boost Butterworth filter. In this study, a high-
boost Butterworth filter was used with the homomorphic
function [17]:

Hu,v = γL +
γH

1 + (D0/Du,v)
2 , (11a)

with:

Du,v =
√

(u − N/2)2 2 + (v − N/2)2,
(11b)

where D0 = 1.8 is the cut of frequency of the filter, and
γL = 0.4 and γH = 0.6 are the gains for the low and high
frequencies, respectively, u and v are the spatial coordi-
nates of the frequency transformed image, and N is the
dimensions of the image in the u and v space.

This form of filtering sharpens features and flattens
speckle variations in an image.

F. Diffusion Filtering

Diffusion filters remove noise from an image by modi-
fying the image via solving a partial differential equation
(PDE). The smoothing is carried out, depending on the im-
age edges and their directions. Anisotropic diffusion is an
efficient, nonlinear technique for simultaneously perform-
ing contrast enhancement and noise reduction. It smoothes
homogeneous image regions but retains image edges [5],
[22], [23] without requiring any information from the im-
age power spectrum. Thus, it may be applied directly
to logarithmic-compressed images. Consider applying the
isotropic diffusion equation given by dgi,j,t/dt = div (d∇g)
using the original noisy image gi,j,t=0 as the initial con-
dition, where gi,j,t=0 is an image in the continuous do-
main, i, j specifies spatial position, t is an artificial time
parameter, d is the diffusion constant, and ∇g is the im-
age gradient. Modifying the image according to this linear

isotropic diffusion equation is equivalent to filtering the im-
age with a Gaussian filter. In this section we will present
conventional anisotropic diffusion (ad) and coherent non-
linear anisotropic diffusion (nldif).

1. Anisotropic Diffusion Filtering: Perona and Malik
[23] replaced the classical isotropic diffusion equation, as
described above, by the introduction of a function, di,j,t =
f(|∇g|), that smoothes the original image while trying to
preserve brightness discontinuities with:

dgi,j,t

dt
= div [di,j,t∇gi,j,t]

=
[

d

di
di,j,t

d

di
gi,j,t

]
+

[
d

dj
di,j,t

d

dj
gi,j,t

]
, (12a)

where |∇g| is the gradient magnitude, and d(|∇g|) is
an edge-stopping function that is chosen to satisfy d →
0 when |∇g| → ∞ so that the diffusion is stopped
across edges. This function, called the diffusion coefficient,
d(|∇g|), which is a monotonically decreasing function of
the gradient magnitude, |∇g|, yields intraregion smooth-
ing not interregion smoothing [19], [20], [22], [23] by im-
peding diffusion at image edges. It increases smoothing
parallel to the edge and stops smoothing perpendicular to
the edge, as the highest gradient values are perpendicular
to the edge and dilated across edges. The choice of d(|∇g|)
greatly can affect the extent to which discontinuities are
preserved. For example if d(|∇g|) is constant at all loca-
tions, then smoothing progresses in an isotropic manner.
If d(|∇g|) is allowed to vary according to the local im-
age gradient, then we have anisotropic diffusion. A basic
anisotropic PDE is given in (12a). Two different diffusion
coefficients were proposed in [23] and also derived in [22].
The diffusion coefficient suggested were:

d(|∇g|) =
1

1 + (|∇gi,j | /K)2
, (12b)

where K, in (12b) is a positive gradient threshold param-
eter, known as diffusion or flow constant [22]. In our study
the diffusion coefficient in (12b) was used as it was found
to perform better in our images of carotid artery.

A discrete formulation of the anisotropic diffusion in
(12a) is [2], [22], [23]:

dgi,j

dt
=

λ

|ηs|
{
di+1,j,t [gi+1,j − gi,j ]

+ di−1,j,t [gi−1,j − gi,j ] + di,j+1,t [gi,j+1 − gi,j ]

+ di,j−1,t [gi,j−1 − gi,j]
}

, (13a)

where the new pixel gray value, fi,j , at location i, j, is:

fi,j = gi,j +
1
4

dgi,j

dt
, (13b)

where di+1,j,t, di−1,j,t, di,j+1,t, and di,j−1,t are the diffu-
sion coefficients for the west, east, north, and south pixel
directions, in a four-pixel neighborhood, around the pixel
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i, j, where diffusion is computed, respectively. The coeffi-
cient of variation leads to the largest diffusion in which the
nearest-neighbor difference is largest (largest edge), and
the smallest diffusion is calculated in which the nearest-
neighbor difference is smallest (the weakest edge). The con-
stant, λ ∈ �+, is a scalar that determines the rate of diffu-
sion, ηs represents the spatial neighborhood of pixel, i, j,
and |ηs|, is the number of neighbors (usually four, except
at the image boundaries). Perona and Malik [23] linearly
approximated the directional derivative in a particular di-
rection as, ∇gi,j = gi+1,j − gi,j (for the east direction of
the central pixel i, j). Modifying the image according to
the above in (13), which is a linear isotropic diffusion equa-
tion, is equivalent to filtering the image with a Gaussian
filter. The parameters for the anisotropic diffusion filter
used in this study were λ = 0.25, ηs = 8, and the param-
eter K = 30, which was used for the calculation of the
edge-stopping function d(|∇g|) in (12b).

2. Coherent Nonlinear Anisotropic Diffusion Filtering:
The applicability of the ad filter (12) is restricted to
smoothing with edge enhancement, where |∇g| has higher
magnitude at edges. In general, the function d(|∇g|) in
(12) can be put into a tensor form that measures local
coherence of structures such that the diffusion process be-
comes more directional in both the gradient and the con-
tour directions, which represent the directions of maximum
and minimum variations, respectively. Therefore, the nldif
filter will take the form:

dgi,j,t

dt
= div[D∇g], (14)

where D ∈ �2x2 is a symmetric positive, semidefinite dif-
fusion tensor representing the required diffusion in both
gradient and contour directions and, hence, enhancing co-
herent structures as well as edges. The design of D, as well
as the derivation of the coherent nonlinear anisotropic dif-
fusion model, may be found in [24] and is given as:

D = (ω1 ω2)
(

λ1 0
0 λ2

)(
ωT

1
ωT

2

)
, (15a)

with:

λ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

(
1 − (µ1 − µ2)

2

s2

)
if (λ1 − λ2)

2 ≤ s2

0, else

,

λ2 = α,

(15b)

where the eigenvectors ω1, ω2 and the eigenvalues λ1, λ2
correspond to the directions of maximum and minimum
variations and the strength of these variations, respec-
tively. The flow at each point is affected by the local co-
herence, which is measured by (µ1 − µ2) in (15b).

The parameters used in this study for the nldif fil-
ter were s2 = 2 and α = 0.9, which were used for the

calculation of the diffusion tensor D, and the parame-
ter step size m = 0.2, which defined the number of dif-
fusion steps performed. The local coherence is close to
zero in very noisy regions, and diffusion must become
isotropic (µ1 = µ2 = α = 0.9), and in regions with
lower speckle noise the local coherence must correspond
to (µ1 − µ2)

2
> s2 [24].

G. Wavelet Filtering

Speckle reduction filtering in the wavelet domain, used
in this study, is based on the idea of the Daubenchies Sym-
let wavelet and on soft-thresholding denoising, first pro-
posed by Donoho [29]. The method was also investigated
by [25], [26], [35], [36]. The Symlets family of wavelets, al-
though not perfectly symmetrical, were designed to have
the least asymmetry and highest number of vanishing mo-
ments for a given compact support [29]. The waveltc filter,
implemented in this study is described as follows:

• Estimate the variance of the speckle noise, σ2
n, from

the logarithmic transformed noisy image with (8).
• Compute the discrete wavelet transform (DWT), using

the Symlet wavelet for two scales.
• For each subband

– Compute a threshold [27], [29]:

T ={
(Tmax−α(j−1)) σn if Tmax−α(j−1) � Tmin

Tminσn, else
,(16)

where α is a decreasing factor between two con-
secutive levels, Tmax is a maximum factor for σn,
and Tmin is a minimum factor. The threshold T
is primarily calculated using σn and a decreasing
factor, Tmax − α(j − 1).

– Apply the thresholding procedure above on the
wavelet coefficients.

• Invert the multiscale decomposition to reconstruct the
despeckled image f .

III. Methodology

A. Material

A total of 440 ultrasound images of the carotid artery
bifurcation (220 asymptomatic and 220 symptomatic)
were investigated in this study. Asymptomatic images were
recorded from patients at risk of atherosclerosis in the
absence of clinical symptoms. Symptomatic images were
recorded from patients at risk of atherosclerosis, who al-
ready have developed clinical symptoms, such as a stroke
episode.

B. Recording of Ultrasound Images

In this study ultrasound images of the carotid artery
bifurcation were acquired using the ATL HDI-3000 ul-
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trasound scanner (ATL Ultrasound, Bothell, WA). The
ATL HDI-3000 ultrasound scanner is equipped with 64
elements fine pitch high-resolution, 38-mm broadband ar-
ray, a multielement ultrasound scan head with an operat-
ing frequency range of 4–7 MHz, an acoustic aperture of
10×8 mm, and a transmission focal range of 0.8–11 cm [37].
In this work all images were recorded as they are displayed
in the ultrasound monitor after logarithmic compression.
The images were recorded digitally on a magneto-optical
drive, with a resolution of 768 × 756 pixels with 256 gray
levels. The image resolution was 16.66 pixels/mm.

C. Despeckle Filtering

Ten despeckle filters were investigated as presented in
Section II and were applied on the 440 logarithmically
compressed ultrasound images.

D. Texture Analysis

Texture provides useful information for the characteri-
zation of atherosclerotic plaque [38]. In this study, a total
of 56 different texture features were extracted both from
the original and the despeckled images as follows [38], [39]:

1. Statistical Features: SF: Mean, median, variance
(σ2), skewness (σ3) kurtosis (σ4), and Speckle index
(σ2/m).

2. Spatial Gray Level Dependence Matrices: SGLDM as
proposed by Haralick et al. [39]: angular second moment,
contrast, correlation, sum of squares variance, inverse dif-
ference moment, sum average, sum variance, sum entropy,
entropy, difference variance, difference entropy, informa-
tion measures of correlation. Each feature was computed
using a distance of one pixel. Also for each feature the
mean values and the range of values were computed and
were used as two different feature sets.

3. Gray Level Difference Statistics: GLDS [40]: con-
trast, angular second moment, entropy, and mean.

4. Neighborhood Gray Tone Difference Matrix:
NGTDM [41]: coarseness, contrast, business, complexity,
and strength.

5. Statistical Feature Matrix: SFM [42]: coarseness,
contrast, periodicity, and roughness.

6. Laws Texture Energy Measures: TEM [42]: For the
laws TEM extraction, vectors of length l = 7, L =
(1, 6, 15, 20, 15, 6, 1), E = (−1,−4,−5, 0, 5, 4, 1) and S =
(−1,−2, 1, 4, 1 − 2,−1) were used, where L performs lo-
cal averaging, E acts as an edge detector, and S acts as a
spot detector. The following TEM features were extracted:
LL-texture energy (TE) from LL kernel, EE-TE from EE
kernel, SS-TE from SS kernel, LE-average TE from LE and
EL kernels, ES-average TE from ES and SE kernels, and
LS-average TE from LS and SL kernels.

7. Fractal Dimension Texture Analysis: FDTA [42]:
Hurst coefficient, H(k), for resolutions k = 1, 2, 3, 4.

8. Fourier Power Spectrum: FPS [42]: radial sum and
angular sum.

E. Distance Measures

In order to identify the most discriminant features sepa-
rating asymptomatic and symptomatic ultrasound images
before and after despeckle filtering, the following distance
measure was computed for each feature [38]:

diszc = |mza − mzs|
/√

σ2
za + σ2

zs, (17)

where z is the feature index, c if o indicates the origi-
nal image set and if f indicates the despeckled image set,
mza and mzs are the mean values, and σza and σzs are
the standard deviations of the asymptomatic and symp-
tomatic classes, respectively. The most discriminant fea-
tures are the ones with the highest distance values [38]. If
the distance after despeckle filtering is increased, i.e.:

diszf > diszo, (18)

then it can be derived that the classes may be better sep-
arated.

For each feature, a percentage distance was com-
puted as:

feat disz = (diszf − diszo) 100. (19)

For each feature set, a score distance was computed as:

Score Dis = (1/N)
N∑

z=1

(diszf − diszo) 100,
(20)

where N is the number of features in the feature set. It
should be noted that, for all features, a larger feature dis-
tance shows improvement.

F. Univariate Statistical Analysis

The Wilcoxon rank sum test was used in order to detect
if, for each texture feature, a significant (S) difference or
not (N) exists between the original and the despeckled
images at p < 0.05.

G. kNN Classifier

The statistical kNN classifier using the Euclidean dis-
tance with k = 7 also was used to classify a plaque image
as asymptomatic or symptomatic [38]. The leave-one-out
method was used for evaluating the performance of the
classifier, in which each case is evaluated in relation to
the rest of the cases. This procedure is characterized by
no bias concerning the possible training and evaluation
bootstrap sets. The kNN classifier was chosen because it
is simple to implement and computationally very efficient.
This is highly desired due to the many feature sets and
filters tested [42].
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H. Image Quality Evaluation Metrics

Differences between the original, gi,j , and the despeck-
led, fi,j , images were evaluated using image quality eval-
uation metrics. The following measures, which are easy to
compute and have clear physical meaning, were computed.
The MSE:

MSE =
1

MN

M∑
i=1

N∑
j=1

(gi,j − fi,j)
2
, (21)

which measures the quality change between the original
and processed image in an MxN window [43]. The root
MSE (RMSE), which is the square root of the squared
error averaged over an MxN window [44]:

RMSE =

√√√√ 1
MN

M∑
i=1

N∑
j=1

(gi,j − fi,j)
2
. (22)

The error summation in the form of the Minkowski met-
ric, which is the norm of the dissimilarity between the orig-
inal and the despeckled images [45]:

Err =

⎛
⎝ 1

MN

M∑
i=1

N∑
j=1

|gi,j − fi,j |β
⎞
⎠

1/β

, (23)

computed for β = 3 (Err3) and β = 4 (Err4). For β =
2, the RMSE is computed as in (22), whereas for β =
1 the absolute difference, and for β = ∞ the maximum
difference measure.

The geometric average error (GAE) is computed as
in [46]. The GAE is approaching zero, if there is a very
good transformation (small differences) between the orig-
inal and the despeckled image, and high vice versa. This
measure also is used for teleultrasound, when transmitting
ultrasound images and is defined as:

GAE =

⎛
⎝ M∏

i=1

N∏
j=1

√
gi,j − fi,j

⎞
⎠

1/MN

. (24)

The signal-to-noise ratio (SNR) is given by [47]:

SNR = 10 log10

M∑
i=1

N∑
j=1

(
g2

i,j + f2
i,j

)
M∑
i=1

N∑
j=1

(gi,j − fi,j)
2
. (25)

The peak SNR (PSNR) is computed using [47]:

PSNR = −10 log10
MSE

g2
max

, (26)

where g2
max is the maximum intensity in the unfiltered im-

age. The PSNR is higher for a better-transformed image
and lower for a poorly transformed image. It measures

image fidelity, which is how closely the despeckled image
resembles the original image.

The mathematically defined universal quality index [48]
models any distortion as a combination of three different
factors: loss of correlation, luminance distortion, and con-
trast distortion and is derived as:

Q =
σgf

σfσg
· 2fg

(f)2 + (g)2
· 2σfσg

σ2
f + σ2

g

, −1 < Q < 1,
(27)

where g and f represent the mean of the original and de-
speckled values with their standard deviations, σg and σf ,
of the original and despeckled values of the analysis win-
dow, and σgf represents the covariance between the orig-
inal and despeckled windows. Q is computed for a sliding
window of size 8×8 without overlapping. Its highest value
is 1 if gi,j = fi,j ; its lowest value is −1 if fi,j = 2g − gi,j.

The structural similarity index between two images [45],
which is a generalization of (27), is given by:

SSIN =

(
2gf +c1

)
(2σgf +c2)(

g2 +f
2
+c1

)(
σ2

g +σ2
f +c2

) , −1<SSIN < 1,
(28)

where c1 = 0.01dr and c2 = 0.03dr, with dr = 255 repre-
senting the dynamic range of the ultrasound images. The
range of values for the SSIN lies between −1, for a bad
and 1 for a good similarity between the original and de-
speckled images, respectively. It is computed, similarly to
the Q measure, for a sliding window of size 8 × 8 without
overlapping.

It is noted that a new image quality metric, based on
natural scene statistics and mutual information between
the original and the filtered images, has recently been pro-
posed by Sheikh et al. [49]. This metric will be investigated
in a future study.

I. Visual Evaluation by Experts

Visual evaluation can be broadly categorized as the abil-
ity of an expert to extract useful anatomical information
from an ultrasound image. The visual evaluation varies,
of course, from expert to expert and is subject to the ob-
server’s variability [50]. The visual evaluation in this study
was carried out according to the International Telecommu-
nication Union Radiocommunication Sector (ITU-R) rec-
ommendations with the double stimulus continuous qual-
ity scale (DSCQS) procedure [46]. A total of 100 ultra-
sound images of the carotid artery bifurcation (50 asymp-
tomatic and 50 symptomatic) were evaluated visually by
two vascular experts—a cardiovascular surgeon and a neu-
rovascular specialist—before and after despeckle filtering.
For each case, the original and the despeckled images (de-
speckled with filters lsmv, lsminsc, median, wiener, homog,
gf4d, homo, ad, nldif, and waveltc) were presented without
labelling at random to the two experts. The experts were
asked to assign a score in the one-to-five scale correspond-
ing to low and high subjective visual perception criteria.
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Five was given to an image with the best visual percep-
tion. Therefore, the maximum score for a filter is 500, if
the expert assigned the score of five for all 100 images. For
each filter, the score was divided by five to be expressed in
percentage format. The experts were allowed to give equal
scores to more than one image in each case. For each class
and for each filter, the average score was computed.

The two vascular experts evaluated the area around the
distal common carotid, 2–3 cm before the bifurcation and
the bifurcation. It is known that measurements taken from
the far wall of the carotid artery are more accurate than
those taken from the near wall [51]. Furthermore, the ex-
perts were examining the image in the lumen area to iden-
tify the existence of plaque or not.

IV. Results

In this section we present the results of the 10 despeckle
filters described in Section II, applied on 220 asymp-
tomatic and 220 symptomatic ultrasound images of the
carotid artery bifurcation. A total of 56 texture features
were computed, and the most discriminant ones are pre-
sented. Furthermore, the performance of these filters is in-
vestigated for discriminating between asymptomatic and
symptomatic images using the statistical kNN classifier.
Moreover, nine different image quality evaluation metrics
were computed, as well as visual evaluation scores carried
out by two experts.

A. Evaluation of Despeckle Filtering on a
Symptomatic Ultrasound Image

Fig. 2 shows an ultrasound image of the carotid to-
gether with the despeckled images. The best visual results
as assessed by the two experts were obtained by the filters
lsmv and lsminsc; the filters gf4d, ad, and nldif also showed
good visual results but smoothed the image considerably
and thus edges and subtle details may be lost. Filters that
showed a blurring effect are the median, wiener, homog,
and waveltc. Filters wiener, homog, and waveltc showed
poorer visual results.

B. Texture Analysis: Distance Measures

Despeckle filtering and texture analysis were carried out
on 440 ultrasound images of the carotid. Table II tabu-
lates the results of feat disz (19), and Score Dis (20),
for SF, SGLDM range of values and NGTDM feature sets
for the 10 despeckle filters. Only the results of these fea-
ture sets are presented because they were the ones with
the best performance. The filters are categorized in local
statistics, median, maximum homogeneity (HF), geomet-
ric (GF), homomorphic (HM), diffusion and wavelet fil-
ters, as introduced in Sections I and II. Also, the number
of iterations (Nr. of It.) for each filter is given, which was
selected based on C and on the visual evaluation of the

two experts. When C was minimally changing, the filter-
ing process was stopped. The bold numbers represent the
values that showed an improvement after despeckle filter-
ing compared to the original. The last row in each subtable
shows the Score Dis for all features in which the highest
value indicates the best filter in the subtable. Additionally,
a total score distance Score Dis T was computed for all
feature sets shown in the last row of Table II. Some of the
despeckle filters shown in Table II are changing a num-
ber of texture features by increasing the distance between
the two classes (positive values in Table II) and, therefore,
making the identification and separation between asymp-
tomatic and symptomatic plaques more feasible. A posi-
tive feature distance shows improvement after despeckle
filtering; a negative feature shows deterioration.

In the first part of Table II, the results of the SF features
are presented in which the best Score Dis is given for the
filter homo followed by the lsminsc, lsmv, homog, nldif,
waveltc, median, and wiener, with the worst Score Dis
given by gf4d. All filters reduced the speckle index, C.
Almost all filters reduced significantly the variance, σ2,
and the kurtosis, σ3, of the histogram, as may be seen
from the bold numbers in the first part of Table II.

In the second part of Table II, the results of the
SGLDM-range of values features set are tabulated. The
filters with the highest Score Dis in the SGLDM range
of values features set, are homo, lsminsc, median, ad, and
homog; all other the filters (nldif, wiener, waveltc, gf4d,
lsmv) are presenting a negative Score Dis. Texture fea-
tures, which improved in most of the filters, are the con-
trast, correlation, sum of squares variance, sum average,
and sum variance.

In the third part of Table II, for the NGTDM fea-
ture set, almost all filters showed an improvement in
Score Dis. Best filters in the NGTDM feature set were
the homo, lsminsc, homog, and lsmv. Texture features im-
proved at most were the completion, coarseness, and con-
trast. The completion of the image was increased by all
filters.

In the last row of Table II, the total score distance,
Score Dis T , for all feature sets is shown; best values were
obtained by the filters homo, lsminsc, median, lsmv, ho-
mog, and ad.

C. Texture Analysis: Univariate Statistical Analysis

Table III shows the results of the rank sum test, which
was performed on the SGLDM range of values features set
of Table II, for the 10 despeckle filters. The test was per-
formed to check if significant differences exist between the
features computed on the 440 original and the 440 despeck-
led images. Filters that resulted with the most significant
number of features after despeckle filtering as shown with
the score row of Table III were: lsmv, gf4d, lsminsc and
nldif. The rest of the filters gave a lower number of signifi-
cantly different features. Features that showed a significant
difference after filtering were the inverse difference moment
(IDM), angular second moment (ASM), sum of entropy,
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TABLE II
Feature Distance (18) and Score Dis (19) for SF, SGLDM Range of Values, and NGTDM Texture Feature Sets Between

Asymptomatic and Symptomatic Carotid Plaque Ultrasound Images.
1

Local statistics HF GF HM Diffusion Wavelet
Feature lsmv lsminsc wiener median homog gf4d homo ad nldif waveltc
Nr. of It. 4 1 2 2 1 3 2 20 5 5

SF—Statistical features

Mean 14 22 19 4 11 3 164 18 5 15
Median −5 −17 −26 −5 −5 −15 110 −29 −6 −15
σ2 18 38 18 7 13 −2 140 9 7 18
σ3 12 16 5 9 7 −0.1 149 17 7 8
σ4 −12 −14 −7 −6 −4 −3 117 −21 6 −9
C 0.4 0.3 0.3 0.4 0.3 0.4 0.08 0.3 0.4 0.3
Score dis 27 45 9 9 22 −17 680 −6 19 17

SGLDM range of values—Spatial gray level dependence matrix

ASM2 −21 −0.5 −29 2 −4 −8 −47 −25 −17 −20
Contrast 47 107 14 64 32 −3 165 104 13 22
Correlation 12 59 15 24 −5 2 10 54 −4 −4
SOSV 9 40 18 10 16 −2 101 9 8 20
IDM −50 −11 −48 2 −29 −8 94 −54 −34 −43
SAV 17 24 23 7 15 3 169 22 6 18∑

V ar 19 38 18 9 15 −2 90 9 8 20∑
Entr −34 −14 −49 3 −19 −4 −11 −47 −30 −36

Score dis −1 243 −38 121 21 −22 571 72 −50 −23

NGTDM—Neighborhood gray tone difference matrix

Coarseness 30 87 4 9 −16 −7 72 −36 −37 −33
Contrast 7 −0.3 −9 8 0.4 −4 105 5 −27 −15
Busyness 17 26 −30 8 1 −4 48 −14 −39 8
Completion 64 151 21 53 80 2 150 63 18 27
Score dis 118 264 −14 78 66 −13 375 18 −85 −13
Score dis T 144 551 −43 208 108 −52 1626 84 −116 −19

1Bold numbers show improvement after despeckle filter.
2ASM, angular 2nd moment; SOSV, sum of squares variance; IDM, inverse difference moment; SAV, sum
average;

∑
V ar, sum variance; HF, homogeneity; GF, geometric; HM, homomorphic.

TABLE III
Wilcoxon Rank Sum Test for the SGLDM Range of Values Texture Features Applied on the 440 Ultrasound Images of

Carotid Plaque Before and After Despeckle Filtering. The Test Shows with S and N, the Features That Are and Are Not

Significantly Different After Filtering at P < 0.05, Respectively.

Local statistics Median HF GF HM Diffusion Wavelet
Feature lsmv lsminsc wiener median homog gf4d homo ad nldif waveltc Score2

ASM1 S S N N S S N S S S 7
Contrast S N N N N S N N S N 3
Correlation S S N N N S N N N N 3
SOSV S N N N N S N N N N 2
IDM S S N S S S S N S S 8
SAV N N N N N N N N N N 0∑

V ar S S N N N N N N N N 2∑
Entropy S S N N N S N N S S 5

Score 7 5 0 1 2 6 1 1 4 3

1ASM, angular 2nd moment; SOSV, sum of squares variance; IDM, inverse difference moment; SAV, sum
average;

∑
V ar, sum variance; HM, homomorphic; HF, homogeneity; GF, geometric; HM, homomorphic.

2Score, illustrates the number of S.
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Fig. 2. Original ultrasound image of the carotid artery (2–3 cm proximal to bifurcation) given in (a), and the despeckled filtered images
given in (b)–(k).

contrast, correlation, sum of squares variance (SOSV), and
sum variance,

∑
V ar. These features were mostly affected

after despeckle filtering, and they were significantly differ-
ent.

D. Texture Analysis: kNN Classifier

Table IV shows the percentage of correct classifications
score for the kNN classifier with k = 7 for classifying a
subject as asymptomatic or symptomatic. The classifier
was evaluated using the leave-one-out method [42], on 220
asymptomatic and 220 symptomatic images on the original
and despeckled images. The percentage of correct classi-
fications score is given for the following feature sets: SF,
SGLDMm, SGLDMr, GLDS, NGTDM, SFM, Laws TEM,
FDTA, and FPS. Filters that showed an improvement in
classifications success score compared to that of the orig-
inal image set were in average (last row of Table IV) the
filters homo (3%), gf4d (1%), and lsminsc (1%).

Feature sets that benefited most by the despeckle fil-
tering were the SF, GLDS, NGTDM, and TEM when
counting the number of cases that the correct classifica-

tions score was improved. Less improvement was observed
for the feature sets FDTA, SFM, SGLDMm, FPS, and
SGLDMr. For the feature set SGLDMr better results are
given for the lsminsc filter with an improvement of 2%.
This is the only filter that showed an improvement for this
class of features. For the feature set TEM the filter lsmv
shows the best improvement with 9%. For the FPS feature
set, the filter lsminsc gave the best improvement with 5%.
The filter lsminsc showed improvement in the GLDS and
NGTDM feature sets. The filter lsmv showed improvement
for the feature sets SF and TEM.

E. Image Quality Evaluation Metrics

Table V tabulates the image quality evaluation metrics
presented in Section III-H, for the 220 asymptomatic and
220 symptomatic ultrasound images between the original
and the despeckled images, respectively. Best values were
obtained for the nldif, lsmv and waveltc with lower MSE,
RMSE, Err3, and Err4 and higher SNR and PSNR. The
GAE was 0.00 for all cases; this can be attributed to the
fact that the information between the original and the de-
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TABLE IV
Percentage of Correct Classifications Score for the kNN Classifier with k = 7 for the Original and the Filtered Image

Sets.
1

Feature No. of Local statistics Median HF GF HM Diffusion Wavelet
set feat. Original lsmv lsminsc wiener median homog gf4d homo ad nldif waveltc

SF 5 59 62 61 61 57 63 59 65 60 52 61
SGLDMm 13 65 63 64 62 63 69 67 68 61 66 63
SGLDMr 13 70 66 72 64 66 65 70 69 64 65 65
GLDS 4 64 63 66 61 69 64 66 72 59 58 62
NGTDM 5 64 63 68 60 69 63 65 57 60 61 62
SFM 4 62 62 60 62 58 55 65 68 59 56 55
TEM 6 59 68 52 60 59 66 60 65 53 60 60
FDTA 4 64 63 66 53 68 53 62 73 55 54 62
FPS 2 59 54 64 59 58 59 59 59 52 48 55
Average 63 63 64 60 63 62 64 66 58 58 61

1Bold numbers indicate improvement after despeckling.
2SF, statistical features; SGLDMm, spatial gray level dependence matrix mean values; SGLDMr, spatial
gray level dependence matrix range of values; GLDS, gray level difference statistics; NGTDM, neighborhood
gray tone difference matrix; SFM, statistical feature matrix; TEM, laws texture energy measures; FDTA,
fractal dimension texture analysis; FPS, Fourier power spectrum; HF, homogeneity; GF, geometric; HM,
homomorphic.

TABLE V
Image Quality Evaluation Metrics Computed for the 220 Asymptomatic and 220 Symptomatic Images.

Local statistics Median HF GF HM Diffusion Wavelet
Feature set lsmv lsminsc wiener median homog gf4d homo ad nldif waveltc

Asymptomatic images

MSE1 13 86 19 131 42 182 758 132 8 11
RMSE 3 9 4 10 6 13 27 11 2 3
Err3 7 17 5 25 14 25 38 21 5 4
Err4 11 26 7 41 24 40 49 32 10 5
GAE 0 0 0 0 0 0 0 0 0 0
SNR 25 17 23 16 21 14 5 14 28 25
PSNR 39 29 36 29 34 27 20 28 41 39
Q 0.83 0.78 0.74 0.84 0.92 0.77 0.28 0.68 0.93 0.65
SSIN 0.97 0.88 0.92 0.94 0.97 0.88 0.43 0.87 0.97 0.9

Symptomatic images

MSE 33 374 44 169 110 557 1452 374 8 23
RMSE 5 19 6 13 10 23 37 19 3 5
Err3 10 33 9 25 20 43 51 31 5 6
Err4 16 47 11 38 30 63 64 43 7 8
GAE 0 0 0 0 0 0 0 0 0 0
SNR 24 13 22 16 17 12 5 12 29 25
PSNR 34 23 33 26 28 21 17 23 39 36
Q 0.82 0.77 0.7 0.79 0.87 0.75 0.24 0.63 0.87 0.49
SSIN 0.97 0.85 0.89 0.81 0.94 0.85 0.28 0.81 0.97 0.87

1MSE, mean square error; RMSE, randomized mean square error; Err3, Err4, Minowski metrics; GAE,
geometric average error; SNR, signal-to-noise ratio; PSNR, peak signal-to-noise ratio; Q, universal quality
index; SSIN, structural similarity index.

speckled images remains unchanged. Best values for the
universal quality index, Q, and the structural similarity
index, SSIN were obtained for the filters lsmv and nldif.

F. Visual Evaluation by Experts

Table VI shows the results of the visual evaluation of
the original and despeckled images made by two experts, a
cardiovascular surgeon and a neurovascular specialist. The

last row of Table VI presents the overall average percentage
(%) score assigned by both experts for each filter.

For the cardiovascular surgeon, the average score
showed that the best despeckle filter is the lsmv with a
score of 62%, followed by gf4d, median, homog and origi-
nal with scores of 52%, 50%, 45%, and 41%, respectively.
For the neurovascular specialist, the average score showed
that the best filter is the gf4d with a score of 72%, fol-
lowed by lsmv, original, lsminsc and median with scores of
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TABLE VI
Percentage Scoring of Visual Evaluation of the Original and Despeckled Images [50 Asymptomatic (A) and 50 Symptomatic

(S)] by the Experts.

Local statistics Median HF1 GF HM Diffusion Wavelet
Experts A/S Original lsmv lsminsc median homog gf4d homo nldif waveltc

Cardiovascular A 33 75 33 43 47 61 19 43 32
Surgeon S 48 49 18 57 43 42 20 33 22
Average % 41 62 26 50 45 52 19 38 27
Neurovascular A 70 76 73 74 63 79 23 52 29
Specialist S 66 67 63 58 45 65 55 41 28
Average % 68 71 68 66 54 72 39 47 28
Overall average % 54 67 47 58 50 62 29 43 28

1HF, homogeneity; GF, geometric; HM, homomorphic.

71%, 68%, 68%, and 66%, respectively. The overall aver-
age percent score shows that the highest score was given
to the filter lsmv (67%), followed by gf4d (62%), median
(58%), and original (54%). It should be emphasized that
the despeckle filter lsmv is the only filter that was graded
with a higher score than the original by both experts for
the asymptomatic and symptomatic image sets.

We may observe a difference in the scorings between the
two vascular specialists. This is because the cardiovascular
surgeon is primarily interested in the plaque composition
and texture evaluation, and the neurovascular specialist
is interested in evaluating the degree of stenosis and the
lumen diameter in order to identify the plaque contour.
Filters lsmv and gf4d were identified as the best despeckle
filters by both specialists as they improved visual percep-
tion with overall average scores of 67% and 62%, respec-
tively. The filters waveltc and homo were scored by both
specialists with the lowest overall average scores of 28%
and 29%, respectively.

By examining the visual results of Fig. 2, the statis-
tical results of Tables II–V and the visual evaluation of
Table VI, we can conclude that the best filters are lsmv
and gf4d, which may be used for both plaque composi-
tion enhancement and plaque texture analysis. The filters
lsmv, gf4d, and lsminsc are more appropriate to identify
the degree of stenosis and, therefore, may be used when
the primary interest is to outline the plaque borders.

V. Discussion

Despeckle filtering is an important operation in the en-
hancement of ultrasound images of the carotid artery, in
both the case of texture analysis, image quality evalua-
tion, and visual evaluation by the experts. In this study, a
total of 10 despeckle filters were comparatively evaluated
on 440 ultrasound images of the carotid artery bifurcation,
and the validation results are summarized in Table VII.

As given in Table VII, filters lsmv, lsminsc, and homo,
improved the class separation between the asymptomatic
and the symptomatic classes (see also Table II). Filters
lsmv, lsminsc, and gf4d gave a high number of significantly
different features (see Table III). Filters lsminsc, gf4d, and
homo gave only a marginal improvement in the percent-

age of correct classifications success rate (see Table IV).
Moreover, filters lsmv, nldif, and waveltc gave better im-
age quality evaluation results (see Table V). Filters lsmv
and gf4d improved the visual assessment carried out by
the experts (see Table VI). It is clearly shown that filter
lsmv gave the best performance, followed by filters lsminsc
and gf4d (see Table VII). Filters lsmv or gf4d can be used
for despeckling asymptomatic images in which the expert
is interested mainly in the plaque composition and tex-
ture analysis. Filters lsmv, gf4d, or lsmnsc can be used
for despeckling of symptomatic images in which the ex-
pert is interested in identifying the degree of stenosis and
the plaque borders. Filters homo, nldif, and waveltc gave
poorer performance.

Filter lsmv gave very good performance with respect
to: preserving the mean and the median as well as de-
creasing the variance and the speckle index of the image;
increasing the distance of the texture features between
the asymptomatic and the symptomatic classes; signifi-
cantly changing the SGLDM range of values texture fea-
tures after filtering based on the Wilcoxon rank sum test;
marginally improving the classification success rate of the
kNN classifier for the classification of asymptomatic and
symptomatic images in the cases of SF, SMF, and TEM
feature sets; and improving the image quality of the im-
age. The lsmv filter, which is a simple filter, is based on
local image statistics. It was first introduced in [9], [14],
[15] by Lee, and it was tested on a few SAR images with
satisfactory results. It also was used for SAR imaging in
[13] and image restoration in [16], again with satisfactory
results.

Filter lsminsc gave the best performance with respect
to: preserving the mean, as well as decreasing the vari-
ance and the speckle index and increasing the contrast of
the image; increasing the distance of the texture features
between the asymptomatic and the symptomatic classes;
significantly changing the SGLDM texture features after
filtering based on the Wilcoxon rank sum test; improving
the classification success rate of the kNN classifier for the
classification of asymptomatic and symptomatic images in
the cases of SF, SGLDMr, GLDS, NGTDM, FDTA, and
FPS feature sets. Filter lsminsc was originally introduced
by Nagao and Matsuyama in [32] and was tested on an
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TABLE VII
Summary Findings of Despeckle Filtering in Ultrasound Imaging of the Carotid Artery.

Optical
Statistical and Statistical kNN Image quality perception
texture features analysis classifier evaluation evaluation

Despeckle filter Table II Table III Table IV Table V Table VI

Local statistics
lsmv

√ √ √ √

lsminsc
√ √ √

Geometric filtering
gf4d

√ √ √

Homomorphic filtering
homo

√ √

Diffusion filtering
nldif

√

Wavelet filtering
waveltc

√

artificial and a SAR image with satisfactory performance.
In this study the filter was modified, by using the speckle
index instead of the variance value for each subwindow [as
described in Section II-A,2, (9)].

Filter gf4d gave very good performance with respect
to: decreasing the speckle index; marginally increasing the
distance of the texture features between the asymptomatic
and the symptomatic classes; significantly changing the
SGLDM range of values texture features after filtering
based on the Wilcoxon rank sum test; improving the classi-
fication success rate of the kNN classifier for the classifica-
tion of asymptomatic and symptomatic images in the cases
of SGLDMm, GLDS, NGTDM, SFM, and TEM feature
sets. The geometric filter gf4d was introduced by Busse et
al. [10] and was tested visually on a few SAR images with
satisfactory results.

Filters used for speckle reduction in ultrasound imaging
by other investigators include: median [33], wiener [13], ho-
mog [8], homo [17], [18], ad [5], and waveltc [29]. However,
these filters were evaluated on a small number of images,
and their performance was tested based only on the mean,
median, standard deviation, and speckle index of the im-
age before and after filtering.

The median and the wiener filters were originally used
by many researchers for suppressing the additive and later
for suppressing the multiplicative noise in different types of
images [2]–[9], [13], [33]. The results of this study showed
that the wiener and median filters were not able to re-
move the speckle noise and produced blurred edges in the
filtered image (see Fig. 2). In this study the median filter
performed poorer as shown in Tables II and III, and IV.

The homog [8] and homo [2], [17], [18] filters, were re-
cently used by some researchers for speckle reduction, but
our results in Tables II, III, and V and the visual evalua-
tion of the experts in Table VI showed poor performance,
especially for the homo filter.

Anisotropic diffusion is an efficient, nonlinear technique
for simultaneously performing contrast enhancement and
noise reduction. It smoothes homogeneous image regions
but retains image edges [23]. Anisotropic diffusion filters

usually require many iteration steps compared with the lo-
cal statistic filters. In a recent study [5], speckle-reducing
anisotropic diffusion filtering was proposed as the most ap-
propriate filter for ultrasound images of the carotid artery.
However, in this study, ad, as shown in Tables II, III, IV,
V, and VI, performed poorer compared to lsmv, gf4d, and
lsminsc.

Furthermore, wavelet filtering proposed by Donoho [29]
was investigated for suppressing the speckle noise in SAR
images [15], [35], real world images [25], and ultrasound im-
ages [26] with favorable results. In this study, it is shown
that the waveltc filter gave poorer performance for remov-
ing the speckle noise from the ultrasound images of the
carotid artery (Tables II, III).

VI. Conclusion

Despeckle filtering is an important operation in the en-
hancement of ultrasonic imaging of the carotid artery. In
this study it was shown that simple filters based on local
statistics (lsmv and lsminsc) and geometric filtering (gf4d)
could be used successfully for the processing of these im-
ages. In this context, despeckle filtering can be used as a
preprocessing step for the automated segmentation of the
IMT [52] and the carotid plaque, followed by the carotid
plaque texture analysis, and classification. This field is cur-
rently being investigated by our group [53]. Initial findings
show promising results; however, further work is required
to evaluate the performance of the suggested despeckle fil-
ters at a larger scale as well as their impact in clinical
practice. In addition, the usefulness of the proposed de-
speckle filters in portable ultrasound systems and in wire-
less telemedicine systems still has to be investigated.
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