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a  b  s  t  r  a  c  t

Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in

medicine to assess the severity of atherosclerosis and monitor its progression through

time. It is also used in border detection and texture characterization of the atheroscle-

rotic carotid plaque in the CCA, the identification and measurement of the intima-media

thickness (IMT) and the lumen diameter that all are very important in the assessment of

cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multi-

plicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is

therefore essential for improving the visual observation quality or as a pre-processing step

for  further automated analysis, such as image segmentation of the IMT and the atheroscle-

rotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we

have developed in MATLAB® a unified toolbox that integrates image despeckle filtering (IDF),

texture analysis and image quality evaluation techniques to automate the pre-processing

and complement the disease evaluation in ultrasound CCA images. The proposed software,

is  based on a graphical user interface (GUI) and incorporates image  normalization, 10 differ-

ent  despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf,

DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 tex-

ture  features, 15 quantitative image quality metrics and objective image quality evaluation.

The  software is publicly available in an executable form, which can be downloaded from

http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by

comparing its results with quantitative visual analysis performed by a medical expert. It

was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality

perception (based on the expert’s assessment and the image texture and quality metrics). It

is  anticipated that the system could help the physician in the assessment of cardiovascular

image analysis.
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1.  Introduction

In recent years significant technological advancements and
progress in image  processing have been achieved, however,
still a number of factors in the visual quality of images, hinder
the automated analysis [1], and disease evaluation [2]. These
include imperfections of image  acquisition instrumentations,
natural phenomena, transmission errors, and coding artifacts,
which all degrade the quality of image  in the form of induced
noise [3–5]. Ultrasound imaging is a powerful non-invasive
diagnostic tool in medicine, but it is degraded by a form of
multiplicative noise (speckle), which makes visual observation
difficult [4,5]. Speckle is mainly found in echogenic areas of the
image in the form of a granular appearance that affects tex-
ture of the image  [1,6], which may carry important information
about the shape of tissues and organs. Texture [2,7,8] and mor-
phology [9] may provide additional quantitative information
of the area under investigation, which may complement the
human evaluation and provide additional diagnostic details.
It is therefore of interest for the research community to inves-
tigate and apply new image  despeckle filtering techniques
that can increase the visual perception evaluation and further
automate image  analysis, thus improving the final diagno-
sis. These techniques are usually incorporated into integrated
software for medical image  processing applications. It should
be however noted, that it is not always desirable to remove
speckle noise from the images as it can be considered as a nat-
ural tissue effect which may provide additional information,
especially in the areas of strain imaging and speckle track-
ing [10], and methods of ultrasound tissue characterization
[11]. We  propose in this study an integrated despeckle filtering
(IDF) software toolbox (see also Fig. 1 and Fig. 2) for ultrasound
image  of the common carotid artery (CCA) for preprocessing
ultrasound images for further analysis and assessment by the
medical experts in cardiovascular imaging based diagnosis.
The present work incorporates knowledge and results also
presented in previous publications made by our group, where
despeckle filtering [3–5], quality evaluation [12], segmentation
of the intima-media complex (IMC) [13,14] and the atheroscle-
rotic carotid plaque [15] from ultrasound images of the CCA
were investigated. Recently, a video despeckle filtering (VDF)
toolbox for medical ultrasound video has been proposed [16]
and evaluated on 10 ultrasound videos of the CCA. The VDF
toolbox builds up on previous work presented from our group
[15,17–19].

In order to quantitatively evaluate the proposed IDF soft-
ware  system, we  applied 10 different despeckle filtering
techniques and evaluated their performance on 100 ultra-
sound images of the CCA. The IDF software toolbox was
furthermore evaluated through 65 different texture features
and 15 image  quality metrics, which were extracted from the
original and the despeckled images as well as through visual
perception, performed by a neurovascular specialist, before
and after despeckle filtering.

There are a number of studies reported in the litera-
ture, where ultrasound image  medical software systems have
been introduced. An overview of these systems is given in
Table 1. The systems tabulated have been grouped under free-
ware,  and other imaging systems. Loizou and Pattichis [4],
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Save Des peckle d 
ImageApply Despeckling 

Extract  Texture Fea tures  from 
original  and des peckle d images

Select ROI?
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Fig. 1 – Flowchart analysis of the IDF toolbox for ultrasound
image analysis.

presented a despeckle filtering study that was accompanied
with a despeckle filtering toolbox software for ultrasound
imaging of the CCA, based on MATLAB®, whereas, in this
paper we  extend and make the IDF software publicly avail-
able in an executable form, which can be downloaded from
http://www.cs.ucy.ac.cy/medinfo/. The other imaging systems
in Table 1 cover the despeckling of 2D or 3D ultrasound images,
as well as the plaque texture characterization. For ultrasound
image  denoising, a number of systems are available in the
market, such as those that are included in the widely known
commercial ultrasound machines (Esaote S.p.A, Philips Elec-
tronic Ltd) as well as the ones that can be purchased as
stand-alone software systems [20–25].

The structure of the paper is as follows: In Section 2,  the
theoretical concepts of the proposed image  despeckle filters
are presented. In Section 3 we  provide information on the
materials and methods used in this study. The various results
are presented in Section 4, followed by discussion (Section 5).
Finally, Section 6 concludes the paper.

2.  Image  despeckle  filters

In this section, theoretical background on 10 image  despeckle
filtering methods used in the proposed IDF software is pre-
sented as follows: (a) linear filter (DsFlsmv), (b) Wiener linear
filter (DsFwiener), (c) linear filter (DsFlsminsc), (d) nonlinear
filter (DsFkuwahara), (e) geometric filter (DsFgf), (f) median
filter (DsFmedian), (g) hybrid median filter (DsFhmedian),
(h) anisotropic diffusion filter (DsFad), (i) coherent nonlinear
anisotropic diffusion filter (DsFnldif), and (j) speckle reducing
anisotropic diffusion filter (DsFsrad).
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Table 1 – An overview of selected ultrasound common carotid artery imaging despeckling software systems.

Principal investigator Year Method 2D/3D Software platform N System features

Freeware imaging systems-despeckling
Loizou [4,5,12] 2005, 2006, 2008 Despeckle image filtering 2D Matlab® 440 TIF, JPG, PNG, Matlab® files.

Manual, automated segmentation,
image normalization, selection of
despeckle filtering, texture and
image quality analysis. ROI
processing.

Imaging systems-despeckling
Usimagtool® [25] 2007 Image analysis 2D/3D C + + – DICOM, Voluson, raw, TIF, JPG, VTK.

Additive filtering, edge detection,
automated segmentation, volume
visualization.

Xu [24] 2008 Ultra3D®, 3D analysis 3D Windows – TIF, JPG, PNG, image acquisition,
3D image reconstruction, image
pre-processing, 3D visualization.

SegmentTM, Phillips
Electronics Ltd [21]

2010 Cardiovascular analysis 2D/3D Windows/Matlab® – DICOM, raw, TIF, JPG, ROI manual
and automated segmentation.

Imaging systems-plaque segmentation and texture characterization
Kyriakou [22] 2007 Normalization and plaque

texture analysis
2D  Matlab® 440 Supports all image types. Manual

segmentation, image
normalization, texture analysis.

N: Number of cases investigated.
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Fig. 2 – The GUI of the proposed IDF toolbox for ultrasound image analysis when filtering is applied in an ROI selected by
the user of the system. The following components are shown: original image display, filter options, despeckled image
display, texture analysis and quality analysis.

Further algorithmic implementation details and coding can
be found in [4,5]. These filters can either be applied to the
entire image  or to a region of interest (ROI) that can be user
specified. The number of iterations, the filtering window size
and other filtering parameters that are used for each despeckle
filtering method were tuned based, on the subjective despeck-
led video evaluation by a medical expert (see also Section 3).

2.1.  Linear  despeckle  filter  (DsFlsmv)

These filters utilize first order statistics such as the variance
and the mean of a pixel neighborhood and may be described
by a multiplicative noise model [4,5,26] as in (1). Hence the
algorithms in this class are mostly based on the following
equation:

fi,j = ḡ  + ki,j(gi,j − ḡ) (1)

where fi,j, is the estimated noise-free pixel value, gi,j, is the
noisy pixel value in the moving window, ḡ,  is the local mean
value of an N1 × N2 region surrounding and including pixel

gi,j, ki,j is a weighting factor, with k ∈ [0, 1], and i, j are the pixel
coordinates. The factor ki,j, is a function of the local statistics
in a moving window and is defined [5,12,26] as:

ki,j = 1 − ḡ2�2

�2 + �2
n

. (2)

The values �2, and �2
n , represent the variance in the mov-

ing window and the variance of noise in the whole image
respectively. The noise variance may be calculated from the
logarithmically compressed image  by computing the average
noise variance over a number of windows with dimensions
considerably larger than the filtering window [5,26]. The mov-
ing window size for the despeckle filter DsFlsmv in this study
was 5 × 5 and the number of iterations applied to each image
was two. The DsFlsmv filter is the most appropriate in increas-
ing the optical perception evaluation in ultrasound images and
videos, while the mean and the median values are preserved
in ultrasound images [5] and videos [19] by increasing the opti-
cal perception evaluation. The filter decreases the variance of
speckle noise in the image,  improves statistical and texture
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features extraction, increases the classification accuracy and
the overall image  quality of the image  by enhancing edges [4].

2.2.  Wiener  despeckle  filter  (DsFwiener)

The filter DsFwiener uses a pixel-wise adaptive Wiener
method [4,5,27] implemented as given in (1), with the weight-
ing factor ki,j, as follows:

ki,j = �2 − �2
n

�2
. (3)

The moving window size for the despeckle filter DsFwiener
in this study was 5 × 5 and the number of iterations applied
to each image  was set to one. The DsFwiener filter may be
used to increase the optical perception evaluation in ultra-
sound imaging, but it doesn’t preserve edges when compared
with the DsFlsmv filter. It is also not well suited for statistical
analysis as well as for improving the classification accuracy
[4].

2.3.  Linear  despeckle  filter  (DsFlsminsc)

The DsFlsminsc is a 2D filter operating in a 5 × 5 pixel neigh-
borhood by searching for the most homogenous neighborhood
area around each pixel using a 3 × 3 subset window [4,5]. The
middle pixel of the 5 × 5 neighborhood is substituted with the
average gray level of the 3 × 3 mask with the smallest speckle
index, C, where C for log-compressed images is given by:

C = �2
s

ḡs
(4)

where �2
s , and ḡs, represents the variance and the mean of

the 3 × 3 window. The window with the smallest C is the most
homogenous semi-window, which presumably, does not con-
tain any edge. The moving window size for the despeckle
filter DsFlsminsc in this study was 5 × 5 and the number of
iterations applied to each image  was two. The DsFlsminsc
filter is very well suited for improving the outcome of the
statistical analysis and the classification accuracy, but it
does not well preserve edges and the overall image  quality.
Repeated application of the filter may extensively smooth the
image and the edges of an organ and thus destroying subtle
details [4].

2.4.  Nonlinear  despeckle  filter  (DsFkuwahara)

The DsFkuwahara is an 1D filter operating in a 5 × 5 pixel
neighborhood searching for the most homogenous neighbor-
hood area around each pixel [4,28]. The middle pixel of the
1 × 5 neighborhood is then substituted by the median gray
level of the 1 × 5 mask. The filter is iteratively applied to
the image  where the number of iterations is selected by the
user. In this study the number of iterations selected for the
despeckle filter DsFkuwahara was set to two. The DsFkuwa-
hara filter can be used to improve the classification accuracy
of different organs and tissues and to enhance edges, thus also
improving the optical perception evaluation [3].

2.5.  Geometric  despeckle  filter  (DsFgf)

The concept in the geometric filtering is that speckle appears
in the image  as narrow walls and valleys. The geometric filter,
through iterative repetition, gradually tears down  the narrow
walls (bright edges) and fills up the narrow valleys (dark edges),
thus smearing the weak edges that need to be preserved. The
DsFgf filter [29], uses a non-linear noise reduction technique.
It compares the intensity of the central pixel in a 3 × 3 neigh-
borhood with those of its 8 neighbors, and based upon the
neighborhood pixel intensities it increments or decrements
the intensity of the central pixel such that it becomes more
representative of its surroundings. Further algorithmic details
and additional explanation of the operation of the geometric
filter DsFgf may be found in [4,5]. The moving window size
for the despeckle filter DsFgf in this study was 5 × 5 and the
number of iterations applied to each image  was set to one.
The DsFgf filter shows very good performance with respect to
decreasing the speckle index in the image  and for improv-
ing the classification success rate of the kNN classifier for
the classification of asymptomatic and symptomatic images
[4,5].

2.6.  Median  (DsFmedian),  hybrid  median
(DsFhmedian)  despeckle  filters

The filter DsFmedian [4,5] is a median filter applied over
windows of size 5 × 5. This is an extension of the filter
DsFhmedian, which was introduced in [30] and later used
in [4,5] and it computes the median of the outputs gen-
erated by median filtering with three different windows
(cross shape window, x-shape window and normal win-
dow). The moving size window for the despeckle filter
DsFmedian and DsFhmedian was for both filters 5 × 5 pix-
els, while the number of iterations applied to each image
was three and two respectively. The DsFmedian filter is well
suited for improving the optical perception evaluation but
repeated application destroys the image  edges. The filter
DsFhmedian preserves the edges and increases the opti-
cal perception evaluation. It can thus be used to preserve
and enhance edges of various organs in ultrasound images
[3,4].

2.7.  Anisotropic  diffusion  filter  (DsFad)

Perona and Malik [31] introduced the following function, di,j,t =
f (

∣∣∇g
∣∣), that smoothes the original image  while trying to pre-

serve brightness discontinuities:

dgi,j,t

dt
= div[di,j,t∇gi,j,t] =

[
d

di
di,j,t

d

di
gi,j,t

]
+

[
d

dj
di,j,t

d

dj
gi,j,t

]
(5)

where
∣∣∇g

∣∣, is the gradient magnitude, and d(
∣∣∇g

∣∣), is an
edge stopping function, which is chosen to satisfy d → 0 when∣∣∇g

∣∣ → ∞ so that the diffusion is stopped across edges. This

function, called the diffusion coefficient, cd(
∣∣∇g

∣∣), is a mono-

tonically decreasing function of the gradient magnitude,
∣∣∇g

∣∣,
yielding intra-region smoothing, and not inter-region smooth-
ing [4,5,17,27,31] by impeding diffusion at image  edges. A basic
anisotropic partial-differential equation is given in (5). Two
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different diffusion coefficients were proposed in [31], as fol-
lows:

cd(
∣∣∇g

∣∣) = 1

1 + (
∣∣∇gi,j

∣∣ /K)
2

, and cd(
∣∣∇g

∣∣) =
2
∣∣∇gi,j

∣∣
2 + (

∣∣∇gi,j

∣∣ /K1)
2

(6)

where K and K1, are positive gradient threshold parameters,
known as diffusion or flow constants [31]. In this work we used
the first diffusion coefficient in (6) as it was found to perform
better in our images [4,5].

A discrete formulation of the anisotropic diffusion in (5) is
[4,31]:

dgi,j

dt
= �

|�s| {di+1,j,t[gi+1,j − gi,j] + di−1,j,t[gi−1,j − gi,j]

+ di,j+1,t[gi,j+1 − gi,j] + di,j−1,t[gi,j−1 − gi,j]}, (7)

where the new pixel gray value, fi,j, at location i, j, is:

fi,j = gi,j + 1
4

dgi,j

dt
, (8)

where di+1,j,t, di−1,j,t, di,j+1,t, and di,j−1,t, are the diffusion
coefficients for the west, east, north and south pixel direc-
tions respectively, in a four pixel neighborhood, around the
pixel i, j, where diffusion is computed. In regions where the
nearest-neighbor difference is larger (large edge), the diffusion
coefficient is also large yielding more  pronounced diffusion
(smoothing), while the opposite is true in regions where the
nearest-neighbor difference is smaller (the weakest edge). The
constant, � ∈ � +, is a scalar that determines the rate of diffu-
sion while, �s, represents the spatial neighborhood of pixel,
i, j, and |�s|,  is the number of neighbors (usually 4 neighbors
except at the image  boundaries). Perona and Malik [31] lin-
early approximated the directional derivative in a particular
direction as, ∇gi,j = gi+1,j − gi,j (for the east direction of the cen-
tral pixel i, j). Modifying the image  according to equation in (7)
(which is essentially a linear isotropic diffusion equation), is
equivalent to filtering the image  with a Gaussian filter. The
parameters for the anisotropic diffusion filter used in this
work were, number of iterations 20, � = 0.25, �s = 8, and the
parameter K, which is used for the calculation of the edge
stopping function cd(

∣∣∇g
∣∣), in (6) was set equal to K = 30. The

DsFad filter usually smooths the image  extensively but it was
observed that it can also be used to improve the quality of
video encoding as well reducing the bandwidth required for
transmitting the filtered image  over a 3G wireless network [32].

2.8.  Coherent  nonlinear  anisotropic  diffusion  filter
(DsFnldif)

The DsFnldif filter use a symmetric positive semi-definite
diffusion tensor [33] with the parameters as given in [4]. There-
fore, the DsFnldif filter takes the form:

dgi,j,t

dt
= div[D∇g] (9)

where D ∈ � 2x2, is a symmetric positive semi-definite dif-
fusion tensor representing the required diffusion in both
gradient and contour directions and, hence, enhancing coher-
ent structures as well as edges. The design of D, as well
as the derivation of the coherent nonlinear anisotropic dif-
fusion model may be found in [33] and is given as:(10)D =
(ω1 ω2)

(
�1 0
0 �2

)(
ωT

1
ωT

2

)
with

�1 =

⎧⎪⎨⎪⎩ ˛

(
1 − (�1 − �2)2

s2

)
if (�1 − �2)2 ≤ s2

0, else

(11)

�2 = ˛.

where the eigenvectors ω1, ω2 and the eigenvalues �1, �2 of
�s correspond to the directions of maximum and minimum
variations and the strength of these variations, respectively.
The flow at each point is affected by the local coherence,
which is measured by (�1 − �2) in (11). The parameters used
in this work for the DsFnldif filter were, s2 = 2, and  ̨ = 0.9,
which were used for the calculation of the diffusion tensor D,
and the parameter step size m = 0.2, which defined the num-
ber of diffusion steps performed. The local coherence is close
to zero in very noisy regions and diffusion becomes isotropic
(�1 = �2 =  ̨ = 0.9), whereas in regions with lower speckle noise
the local coherence corresponds to (�1 − �2)2 > s2 [33]. The
number of iterations applied to each image,  selected in this
study, for the DsFnldif filter was 5. As it was shown in [3], the
DsFnldif filter may be used to improve the visual appearance of
clinical structures and to improve the atherosclerotic carotid
plaque borders in ultrasound images.

2.9.  Speckle  reducing  anisotropic  diffusion  filter
(DsFsrad)

Speckle reducing anisotropic diffusion is described in [33]. It is
based on setting the diffusion coefficient in the diffusion equa-
tion (5) using the local frame gradient and the frame Laplacian.
The DsFsrad filter in [33] uses two seemingly different meth-
ods, namely the Lee [26] and the Frost diffusion filters [27]. In
[33], a more  general updated function for the output image
is presented, by extending the PDE versions of the despeckle
filter as:

fi,j = gi,j + 1
�s

div(csrad(
∣∣∇g

∣∣)∇gi,j). (12)

where �s is the size of the filtering window. The diffusion coef-
ficient for the speckle anisotropic diffusion, csrad(

∣∣∇g
∣∣), is given

in [33] as:

c2
srad(

∣∣∇g
∣∣) =

(1/2)
∣∣∇gi,j

∣∣2 − (1/16)(∇2gi,j)
2

(gi,j + (1/4)∇2gi,j)
2

. (13)

It is required that csrad(
∣∣∇g

∣∣)≥0. The above instantaneous
coefficient of variation combines a normalized gradient mag-
nitude operator and a normalized Laplacian operator to act
like an edge detector. High relative gradient magnitude and



Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 4 ( 2 0 1 4 ) 109–124 115

low relative Laplacian indicates an edge. The DsFsrad filter
utilizes speckle reducing anisotropic diffusion according to
(12) with the diffusion coefficient, csrad(

∣∣∇g
∣∣) in (13) [33]. The

coefficient of variation for the DsFsrad filter can be selected
from 0.01 up to 0.1 and the number of iterations from 1 to 200.
In this study the number of iterations applied to each image,
was set to 30, while the coefficient of variation was 0.02. As it
was observed during the processing of the carotid plaque bor-
ders and the IMC  in ultrasound images and videos, [3–5,12–19],
the DsFsrad filter may be used to improve the overall image
quality. It was furthermore observed to improve the quality of
video encoding as well reducing the bandwidth required for
transmitting the filtered ultrasound image  over a 3G wireless
network [32].

3.  Despeckle  filtering  toolbox  for
ultrasound  image

The proposed IDF software toolbox, implementation is capa-
ble of loading image  files of most popular standards (see also
Fig. 1). The image  analysis usually starts by importing the orig-
inal ultrasound image  of the CCA (and subsequently defining
an ROI in the image) where despeckle filtering will be applied.
There are 65 different texture features and 15 image  quality
metrics that can be extracted and evaluated by comparing the
original and despeckled images.

Fig. 1 presents a flowchart analysis of the proposed inte-
grated ultrasound IDF software system, where the different
modules of the software are outlined, while Fig. 2 presents
the graphical user interface (GUI) of the system.

3.1.  Recording  of  ultrasound  images

A total of 100 B-mode longitudinal ultrasound images of the
CCA (see Figs. 3 and 4), from women and men  used for
despeckling, were recorded using the ATL HDI-5000 ultra-
sound scanner (Advanced Technology Laboratories, Seattle,
WA), [34]. The ATL HDI-5000 scanner is equipped with a 256
elements fine pitch high-resolution 50 mm linear array, a multi
element ultrasound scan head with an extended operating
frequency range of 5–12 MHz  and it offers real spatial com-
pound imaging. The scanner increases the image  clarity using
SonoCT imaging by enhancing the resolution and borders,
and interface margins are better displayed. Several tests made
by the manufacturer showed that the ATL HDI-5000 scanner
performance was overall superior compared to conventional
2D imaging systems, primarily because of the reduction of
speckle, contrast resolution, tissue differentiation, and image
visual quality [3–5,12–19].

Digital images were resized using the bicubic method to
a standard pixel density of 16.66 pixels/mm with a resolution
of 0.06 mm.  This was carried out due to the small variations
in the number of pixels per mm of image  depth (i.e., for
deeply situated carotid arteries, image  depth was increased,
and therefore, digital image  spatial resolution would have
decreased) and to maintain uniformity in the digital image
spatial resolution [9]. The images were logarithmically com-
pressed and were recorded digitally on a magneto optical drive
at 768 × 576 pixels with 256 gray levels at the Cyprus Institute

of Neurology and Genetics, in Nicosia, Cyprus. The subjects
were, 42 female and 58 male asymptomatic aged between 26
and 95 years old, with a mean age of 54 years that had not
developed clinical symptoms, such as a stroke or a transient
ischemic attack (TIA).

3.2.  Ultrasound  image  normalization

Brightness adjustments of ultrasound images (see Figs. 3 and
4) can be carried out based on the method introduced in [2],
which improves image  compatibility by reducing the variabil-
ity introduced by different gain settings, different operators,
different equipment, and facilitates ultrasound tissue com-
parability [9]. Algebraic (linear) scaling of the entire image is
manually performed by linearly adjusting the image  so that
the median gray level value of the blood was 0–5, and the
median gray level of the adventitia (artery wall) was 180–190
[2,35]. The scale of the gray level of the images ranged from
0–255. Thus the brightness of all pixels in the image  is read-
justed according to the linear scale defined by selecting the
two reference regions. It is noted that a key point to maintain-
ing a high reproducibility was to ensure that the ultrasound
beam was at right angles to the adventitia, adventitia which
was visible adjacent to the plaque and that for image  normal-
ization a standard sample consisting of the half of the width
of the brightest area of adventitia was obtained.

3.3.  Application  of  despeckle  filtering

Despeckle filtering can be applied either to the entire image
(see also Fig. 3) or to an ROI, (see also Fig. 4) selected by the user
after image  normalization (see Section 3.2). The selected ROI
can be of any shape but the software doesn’t support multiple
ROIs selection. In the latter case, where the user of the system
is interested only in the selected ROI, the area outside the ROI
can be blurred using the DsFlsmv filter operating with a sliding
moving window of 15 × 15 pixels and a number iterations 5
(see also Fig. 4). It should be noted that the blurring is applied
outside of the ROI if the user of the system is not interested
to subjectively evaluate this area. The input parameters of the
10 different despeckle filters for the IDF software tool can be
selected by the user as it was documented in Section 2 earlier.

3.4.  Texture  feature  analysis

Texture provides useful information for the characterization
of CCA [7]. The proposed IDF system (see Figs. 1 and 2) is able
to extract, and save in a separate file, a total of 65 different
texture features both from the original and the despeckled
images which are the following [7]:

(i) Statistical Features (SF): (1) Mean, (2) Median, (3) Variance
(�2), (4) Skewness (�3), and (5) Kurtosis (�4).

(ii) Spatial Gray Level Dependence Matrices (SGLDM) as pro-
posed by [8]: (1) Angular second moment (ASM), (2)
Contrast, (3) Correlation, (4) Sum of squares variance
(SOSV), (5) Inverse difference moment (IDM), (6) Sum
average (SA), (7) Sum variance (SV), (8) Sum entropy
(SE), (9) Entropy, (10) Difference variance (DV), (11) Differ-
ence entropy (DE), (12), and (13) Information measures of
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Fig. 3 – Examples of despeckle filtering on the whole ultrasound image of the CCA acquired from a female asymptomatic
subject at the age of 63 with 53% stenosis and a plaque at the far wall of the CCA for the: (a) original, (b) DsFlsmv, (c)
DsFwiener, (d) DsFlsminsc, (e) DsFkuwahara, (f) DsFgf, (g) DsFmedian, (h) DsFhmedian, (i) DsFad, (j) DsFnldif and (k) DsFsrad.

correlation. For a chosen distance d (in this work d = 1 was
used) and for angles � = 0◦, 45◦, 90◦, and 135◦, we computed
four values for each of the above texture measures. Each
feature was computed using a distance of one pixel. Then
for each feature the mean values and the range of values
were computed, and were used as two different feature
sets.

(iii) Gray level difference statistics (GLDS) [36]: (1) homogene-
ity, (2) contrast, (3) energy, (4) entropy, and (5) mean. The
above features were calculated for displacements ı = (0,

1), (1, 1), (1, 0), (1, −1), where ı ≡ (�x, �y), and their mean
values were taken.

(iv) Neighborhood gray tone difference matrix (NGTDM) [37]:
(1) coarseness, (2) contrast, (3) busyness, (4) complexity,
and (5) strength.

(v) Statistical feature matrix (SFM) [6]: (1) coarseness, (2) con-
trast, (3) periodicity, and (4) roughness.

(vi) Laws texture energy measures (LTEM) [6]: (1) LL-
texture energy from LL kernel, (2) EE-texture energy
from EE-kernel, (3) SS-texture energy from SS-kernel,
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Fig. 4 – Examples of despeckle filtering in an ROI selected by the user of the system, of an ultrasound image of the CCA
acquired from a male symptomatic subject at risk of atherosclerosis with a stenosis of 65% and a plaque at the far wall of
the CCA for the: (a) original, (b) DsFlsmv, (c) DsFwiener, (d) DsFlsminsc, (e) DsFkuwahara, (f) DsFgf, (g) DsFmedian, (h)
DsFhmedian, (i) DsFad, (j) DsFnldif and (k) DsFsrad.

(4) LE-average texture energy from LE and EL kernels, (5)
ES-average texture energy from ES and SE kernels, and (6)
LS-average texture energy from LS and SL kernels.

(vii) Fractal dimension texture analysis (FDTA) [6]: The Hurst
coefficients for dimensions 4, 3 and 2 were computed.

(viii) Fourier Power Spectrum (FPS) [6]: (1) radial sum, and (2)
angular sum.

(ix) Shape parameters: (1) X-coordinate maximum length, (2)
Y-coordinate maximum length, (3) area, (4) perimeter, (5)
perimeter2/area, (6) eccentricity, (7) equivalence diameter,

(8) major axis length, (9) minor axis length, (10) centroid,
(11) convex area, and (12) orientation.

3.5.  Image  quality  metrics

Objective image  quality assessment is an emerging area of
active research [1]. In order to quantitatively assess the orig-
inal and despeckled images, differences between the original
and the processed images were evaluated using image  qual-
ity and evaluation metrics, which were used as statistical
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measures. The basic idea is to compute a single number
that reflects the quality of the processed image.  Processed
images with higher metrics have been evaluated as being bet-
ter [1]. The following 15 different quality evaluation measures,
which are easy to compute and have clear physical mean-
ing, were computed [3–5,12]: (a) geometric average error, (b)
mean square error (MSE), (c) signal-to-noise ratio (SNR), (d)
mean root square error (MRSE), (e) peak signal-to-noise ratio
(PSNR), (f, g) error summation in the form of the Minkowski
metric (Err1, Err2), (h) universal quality index (Q), (i) Structural
similarity index (SSI), (j) average difference (AD), (k) Structural
content (SC), (l) normalized cross-correlation (NCC), (m)  maxi-
mum difference (MD), (n) Laplacian mean square error (LMSE),
and (o) normalized absolute error (NAE). A complete descrip-
tion of the above metrics can be found in [5,12] as well as their
MATLAB® software implementation in [4].

3.6.  Visual  evaluation  by  the  expert

In order to objectively evaluate the proposed system, the 100
ultrasound images of the CCA, after image  normalization and
speckle reduction filtering using MATLAB® software developed
by our group, were visually inspected (see Sections 3.2 and
3.3) by a neurovascular specialist. For each case, the origi-
nal and the normalized despeckled images (despeckled with
filters DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf,
DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad) were pre-
sented blindly at random to the expert. The expert was asked
to assign a score corresponding to low and high subjective
visual perception criteria in a scale from one to ten, the latter
was given to the best visual perception. Therefore, if the expert
assigned the score of 10 for all the 100 images, the maximum
score for that filter is 1000. The expert was also allowed to
give equal scores to more  than one image  in each case. For
each class and for each filter the average score was computed.
The expert evaluated the area around the IMC, 2–3 cm before
the bifurcation and the bifurcation around the IMC borders. It
should also be noted that the scoring system used in this work
pre-assumes an a priori knowledge of the range of the quality
of the images, therefore the expert inspected all 100 images in
random order before scoring.

4.  Results

4.1.  Examples  using  the  despeckle  filtering  toolbox  for
ultrasound  images

The applicability of the IDF software toolbox was evaluated
based on normalization, despeckle filtering, texture features,
image  quality evaluation metrics and visual perception eval-
uation made by a medical expert.

Fig. 3(a) illustrates an original ultrasound image  of the
CCA with an atherosclerotic plaque at the far wall, acquired
from an asymptomatic female subject at the age of 63 and a
stenosis of 53%. Fig. 3(b)–(k) presents the despeckled images
(filtering applied to the entire image), with the 10 different
filters, namely (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwa-
hara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif and
DsFsrad). It can be observed that the filters DsFlsmv and

DsFhmedian smoothed the image  without destroying subtle
details.

Fig. 4 presents a different ultrasound image  of the CCA
acquired from a symptomatic subject at risk of atherosclerosis
with a stenosis of 65% and a plaque at the far wall of the CCA,
where the 10 different despeckle filters are applied in an ROI,
selected by the user. The area outside of the ROI is blurred with
the DsFlsmv filter. It is again observed that filters DsFlsmv and
DsFhmedian smoothed the image  without destroying subtle
details. The average processing time is about 2–3 s per image
(on an Intel Core i5-3470 processor with 3.2 GHz and 1GByte of
RAM) for the image  despeckling.

4.2.  Texture  feature  analysis

Since texture features data are not normally distributed, the
Wilcoxon rank sum test [38] which calculates the difference
between the sum of the ranks of two independent samples,
may be used to identify whether significant difference (S) or
not (NS) between sets of texture features extracted from the
original and the despeckled images exists, with a confidence
level of 95% (p < 0.05).

Table 2 presents the results of selected texture features
(see Section 3.4), extracted from the entire original and
the despeckled images and from an ROI (−/−), that was
selected, showing significance difference after despeckle fil-
tering (p < 0.05). The features were extracted from all 100
ultrasound images of the CCA investigated in this study.
These features were the median, variance (SF feature group),
sum average (SGLDM range of values feature group), contrast
(GLDM feature group), coarseness, busyness (NGTDM feature
group), roughness (SFM feature group), energy LL kernel (LTEM
feature group), Hoerst coefficient H1 (FD feature group) and
angular sum (FPS feature group). Also, the number of itera-
tions (no. of it.) for each filter, which was selected based on
C (see Eq. (4)) and on the visual evaluation of the expert, is
given in the second row of Table 2. When C was minimally
changing, the filtering process was stopped. It is observed from
Table 2 that almost all filters preserve the median and reduce
the variance. Furthermore, it is also observed that when the
DsFlsmv and DsFKuwahara filters are applied to the whole
image, they increase contrast, H1 and angular sum, but lower
roughness while at the same time they preserve the rest of
the features. The results of this study can also be favorably
compared with the results presented in [5,12], where simi-
lar texture features values were computed for the DsFlsmv
despeckled plaque images.

4.3.  Image  quality  metrics

Table 3 tabulates selected image  quality metrics between orig-
inal and despeckled images when filtering is applied on the
entire image  and when applied in an ROI (−/−). For all filters
investigated, when filtering was applied on the entire image
or in an ROI the geometric average error (GAE) was 0. This
can be attributed to the fact that the information between the
original and the processed images remains unchanged. The
quality metrics LMSE, and NAE showed a similar performance
as the MSE and RMSE whereas for the DsFlsmv filter, smaller
values of the same metrics were observed. It is observed from
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Table 2 – Texture features (mean ± sd), that showed significant diference (using the wilcoxon rank sum test at p < 0.05) after despeckle filtering, for all 100 images of the
CCA extracted from the original and the despeckled images from the whole image and the roi (−/−).

Original DsFlsmv DsFwiener DsFlsminsc DsFkuwahara DsFgf DsFmedian DsFhmedian DsFad DsFnldif DsFsrad

No. of it. 2 1 2 2 1 3 2 20 5 30
Statistical features (SF)
Median 43 ± 14/

23 ± 17
43 ± 11/
23 ± 15

45 ± 12/
21 ± 15

40 ± 12/
20 ± 15

43  ± 14/
26 ± 17

41 ± 11/
21 ± 14

40 ± 10/
19 ± 13

43 ± 14/
25 ± 12

39 ± 9/
19 ± 13

41 ± 12/
21 ± 15

43 ± 13/
26 ± 14

Variance 54 ± 6/
58 ± 8

53 ± 5/
58 ± 7

47 ± 4/
55 ± 7

50 ± 7/
56 ± 9

58  ± 8/
26 ± 17

50 ± 4/
55 ± 7

49 ± 14/
55 ± 9

54 ± 6/
58 ± 8

48 ± 5/
51 ± 6

43 ± 7/
50 ± 7

54 ± 5/
62 ± 8

SGLDM range of values–spatial gray level dependence matrix
Sum average 0.3 ± 0.1/

0.9 ± 0.7
0.4 ± 0.2/
0.2 ± 0.2

0.3 ± 0.3/
55 ± 7

0.5 ± 0.2/
06 ± 0.9

0.4 ± 0.2/
0.4 ± 0.2

0.4 ± 0.3/
0.8 ± 0.4

0.3 ± 0.1/
0.6 ± 0.1

0.4  ± 0.2/
0.5 ± 0.3

0.2 ± 0.1/
0.6 ± 0.4

0.3 ± 0.2/
0.5 ± 0.3

0.4 ± 0.3/
0.5 ± 0.4

GLDS-gray level difference statistics
Contrast 118 ± 34/

119 ± 34
122 ± 31/
120 ± 17

112 ± 29/
110 ± 16

115 ± 31/
116 ± 17

134 ± 30/
108 ± 31

148 ± 29/
155 ± 22

71 ± 14/
23 ± 17

75 ± 13/
73 ± 17

110 ± 14/
55  ± 11

111 ± 17/
61 ± 16

116 ± 31/
70 ± 19

NGTDM-neighborhood gray tone difference matrix
Coarseness 39 ± 7/

61 ± 11
92 ± 13/
110 ± 22

33 ± 6/
76 ± 12

41 ± 5/
74 ± 13

37  ± 4/
55 ± 12

30 ± 9/
88 ± 14

41 ± 10/
23 ± 17

52 ± 11/
84 ± 21

50 ± 17/
29 ± 14

49 ± 13/
24 ± 12

54 ± 22/
33 ± 18

Busyness 3 ± 8.5/
2.7 ± 9.5

1.2 ± 3.7/
1.3 ± 5.85

3.2 ± 4/
1.9 ± 9.2

3  ± 6.7/
2.2 ± 8.1

3.7  ± 3.8/
2.7 ± 1.1

2.9 ± 7.4/
2.3 ± 9.2

4.3 ± 14/
2.7 ± 9.5

2.1  ± 5.7/
1.7 ± 4.1

4.3 ± 1.4/
5.1 ± 2.3

2.1 ± 1.4/
5.5 ± 2.4

2.4 ± 9.4/
5.7 ± 2.9

SFM-statistical feature matrix
Roughness 2.2 ± 0.02/

2.2 ± 0.02
2.1 ± 0.01/
2.1 ± 0.01

2.2 ± 0.04/
1.9 ± 0.04

1.9 ± 0.03/
1.9 ± 0.02

2.1  ± 0.01/
2.1 ± 0.01

2.1 ± 0.04/
2.3 ± 0.02

2.3 ± 0.01/
2.2 ± 0.02

2.1  ± 0.07/
2.1 ± 0.03

2.3 ± 0.04/
2.1 ± 0.03

2.1 ± 0.02/
2.1 ± 0.01

2.2 ± 0.03/
2.3 ± 0.09

LTEM-laws texture energy measures
Energy

LL-Kernel
367 ± 47/
233 ± 34

343 ± 20/
226 ± 28

312 ± 49/
220 ± 36

215 ± 22/
216 ± 17

445 ± 49/
382 ± 41

148 ± 29/
255 ± 32

271 ± 16/
223 ± 17

298  ± 26/
244 ± 35

290 ± 34/
265 ± 31

297 ± 37/
261 ± 26

310 ± 36/
275 ± 38

FD-fractal dimension
H1 0.5 ± 0.02/

0.9 ± 0.07
0.6 ± 0.007/
0.2 ± 0.2

0.3 ± 0.03/
0.3 ± 0.03

0.5 ± 0.02/
0.6 ± 0.02

0.6  ± 0.006/
0.4 ± 0.002

0.4 ± 0.03/
0.5 ± 0.04

0.6 ± 0.001/
0.6 ± 0.001

0.5  ± 0.02/
0.5 ± 0.03

0.2 ± 0.01/
0.6 ± 0.04

0.3 ± 0.02/
0.5 ± 0.03

0.4 ± 0.08/
0.5 ± 0.4

FPS-Fourier power spectrum
Angular

Sumx100
189 ± 35/
87 ± 21

190 ± 35/
101 ± 27

155 ± 17/
83 ± 19

116 ± 39/
75 ± 22

191 ± 35/
63 ± 21

118 ± 44/
64 ± 23

196 ± 31/
45 ± 11

119 ± 363/
101 ± 25

171 ± 34/
102 ± 21

165 ± 33/
113 ± 19

188 ± 35/
108 ± 23

H1: Hoerst coefficient.
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Table 3 – Image quality evaluation metrics for the 100 ultrasound images of the cca extracted from the original and the despeckled images from the whole image and
the roi (−/−).

Feature
set

DsFlsmv DsFwiener DsFlsminsc DsFkuwahara DsFgf DsFmedian DsFhmedian DsFad DsFnldif DsFsrad

MSE 6441 ± 1805/
6168 ± 2149

6433 ± 1821/
6523 ± 1756

6345 ± 1978/
6712 ± 2200

6231 ± 1856/
6183 ± 2153

6578 ± 2179/
6678 ± 2198

6232 ± 1857/
6118 ± 1765

6232 ± 1856/
6183 ± 2153

6567 ± 2133/
6578 ± 2122

6356 ± 1978/
6268 ± 1856

6231 ± 1856/
6114 ± 1990

SNR 31 ± 1.6/
33 ± 1.3

26  ± 2.2/
21 ± 2.6

24  ± 2.3/
21 ± 1.9

17.4 ± 0.8/
31 ± 3.9

18  ± 2.1/
11 ± 4.6

28  ± 2.2/
26 ± 1.9

33  ± 1.1/
35 ± 2.9

29  ± 1.9/
21 ± 1.2

30.4  ± 1.6/
29 ± 2.1

34  ± 4.1/
34 ± 3.1

RMSE 3.4 ± 0.81/
2.4 ± 0.56

4.5  ± 4.4/
4.1 ± 0.32

4.9  ± 4.7/
4.1 ± 3.1

14 ± 1.8/
11 ± 1.9

2.4  ± 2.1/
2.4 ± 0.11

1.7  ± 1.93/
1.4 ± 1.81

4.1  ± 0.58/
3.6 ± 3.9

2.4  ± 3.3/
2.3 ± 2.8

2.6  ± 3.4/
2.4 ± 3.1

2.4  ± 1.06/
7.5 ± 4.8

PSNR 40 ± 2.1/
42 ± 1.6

15  ± 4.1/
16 ± 3.1

19  ± 2.1/
17 ± 3.3

27.7 ± 1.1/
30 ± 1.2

14  ± 0.9/
9  ± 1.3

16  ± 1.4/
17 ± 2.1

38  ± 9/
41 ± 4.5

11  ± 1.1/
10 ± 1.5

16  ± 2.3/
17 ± 2.6

44  ± 4.3/
34 ± 6.7

ERR3 5.7 ± 2.2/
3.4 ± 0.7

4.5  ± 4.4/
5.3 ± 2.6

4.9  ± 4.7/
4.4 ± 5.3

6.6 ± 2.8/
15 ± 2.8

8.9  ± 2.1/
19 ± 3.7

11.7  ± 1.63/
12 ± 2.7

10.8  ± 1.1/
5.6 ± 4.9

6.4  ± 4.3/
9  ± 3

8.6 ± 3.4/
8  ± 3.1

3.1 ± 1.3/
9.2 ± 5.9

ERR4 8.9 ± 4.8/
4.6 ± 1.1

6.5  ± 2.4/
6.5 ± 2.2

49.4  ± 3.7/
5 ± 4.1

41  ± 1.9/
19 ± 3.7

11.2  ± 3.2/
10.5 ± 3.1

9.7 ± 2.2/
9 ± 5.1

20.7 ± 2.1/
8 ± 6.4

7.4 ± 6.1/
9  ± 7

9.5 ± 4.4/
9.1 ± 4.2

3.5  ± 1.5/
10 ± 6.3

Q 0.95 ± 0.01/
0.95 ± 0.08

0.6 ± 0.4/
0.5 ± 0.03

0.4  ± 0.7/
0.5 ± 0.6

0.7 ± 0.33/
0.65 ± 0.38

0.2 ± 0.3/
0.4 ± 0.4

0.67  ± 0.5/
0.7 ± 0.6

0.93  ± 0.02/
0.9 ± 0.08

0.6  ± 0.46/
0.7 ± 0.5

0.5  ± 0.4/
0.5 ± 0.3

0.8  ± 0.05/
0.88 ± 0.09

SSI 0.97 ± 0.01/
0.98 ± 0.06

0.56 ± 0.6/
0.6 ± 0.05

0.5  ± 0.5/
0.6 ± 0.4

0.79 ± 0.03/
0.84 ± 0.04

0.29 ± 0.23/
0.35 ± 0.33

0.7 ± 0.4/
0.72 ± 0.5

0.97 ± 0.002/
0.96 ± 0.06

0.5  ± 0.6/
0.56 ± 0.7

0.6 ± 0.5/
0.67 ± 0.7

0.95 ± 0.03/
0.88 ± 0.08

AD 0.16 ± 0.01/
0.09 ± 0.03

0.11 ± 0.06/
0.10 ± 0.04

0.5 ± 0.05/
0.6 ± 0.04

0.23 ± 0.22/
0.99 ± 0.01

0.22 ± 0.02/
0.35 ± 0.03

0.37 ± 0.03/
0.33 ± 0.02

0.05 ± 0.01/
0.99 ± 0.05

0.45  ± 0.07/
0.55 ± 0.06

0.36 ± 0.25/
0.47 ± 0.04

0.8  ± 0.05/
0.9 ± 0.01

SC 1 ± 0.06/
1 ± 0.03

1.1 ± 0.06/
0.9 ± 0.04

0.6  ± 0.05/
0.5 ± 0.04

0.98 ± 0.007/
0.99 ± 0.01

0.31 ± 0.03/
0.35 ± 0.02

0.45 ± 0.04/
0.54 ± 0.03

1 ± 0.004/
1 ± 0.005

0.54 ± 0.05/
0.55 ± 0.04

0.63 ± 0.45/
0.67 ± 0.47

1  ± 0.002/
0.87 ± 0.1

NCC 0.99 ± 0.03/
0.99 ± 0.02

0.87 ± 0.06/
0.79 ± 0.03

0.05 ± 0.04/
0.04 ± 0.03

0.99 ± 0.005/
0.99 ± 0.005

0.62 ± 0.02/
0.67 ± 0.04

0.44 ± 0.04/
0.51 ± 0.05

0.99 ± 0.012/
0.99 ± 0.001

0.31  ± 0.03/
0.49 ± 0.03

0.53 ± 0.07/
0.61 ± 0.08

0.99 ± 0.01/
1 ± 0.06

MD 82 ± 62/
30 ± 12

36  ± 17/
35 ± 15

42  ± 23/
39 ± 22

119 ± 17/
94 ± 18

25  ± 28/
20 ± 22

33  ± 2.2/
37 ± 20

35  ± 17/
43 ± 27

29  ± 19/
31 ± 12

34  ± 16/
27 ± 11

13  ± 5/
38 ± 15

GAE: geometric average error, MSE: mean square error, SNR: signal to noise ratio, RMSE: root mean square error, PSNR: peak signal to noise ratio, Err3, Err4: Minkowski metrics, Q: Universal quality
index, SSI: structural similarity index, AD: average difference, SC: structural content, NCC: normalized cross correlation, MD: maximum difference.
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Table 3, that compared with the rest of the filters investi-
gated in this study, the despeckle filter DsFlsmv has the best
performance in terms of Q (0.95 ± 0.01/0.95 ± 0.08) and SSI
(0.97 ± 0.01/0.98 ± 0.06) applied to the whole or in an ROI (−/−)
respectively. Moreover, by observing all the image  quality eval-
uation metrics presented in Table 3 it can be concluded that
the DsFlsmv leads in performance when applied in an ROI, fol-
lowed by the despeckle filter DsFhmedian. Another conclusion
is that that all the image  quality evaluation metrics presented
in Table 3 are equally important. It should also be stressed that
a higher values for the SNR or PSNR (or equivalently, a lower
MSE  or RMSE) do not necessarily point to a higher subjective
image quality, although they do provide some indication.

4.4.  Visual  evaluation  by  the  expert

Table 4 presents the results of the visual evaluation for the
100 original and despeckled CCA ultrasound images, made
by a neurovascular specialist. The evaluation was performed
on both the entirely despeckled image  as well as in an ROI,
where both methods gave similar visual evaluation scorings.
The Table presents the overall average percentage (%) score
assigned by the expert for each filter as well as the filter rank-
ing. It is observed that the DsFlsmv is marginally the best
image despeckle filter, with a score of 91%, followed by the fil-
ter DsFhmedian and DsFkuwahara with scores of 90% and 83%
respectively. The rest of the filters had a poorer performance.

5.  Discussion

In this work we  present an IDF software system for despeck-
ling ultrasound images of the CCA, with the goal to reduce
multiplicative noise in ultrasound images of the CCA in order
to increase the visual perception by the expert/s, as well as
to make the images suitable for further analysis tasks, such
as image  segmentation, texture analysis, image  compression,
and coding. The IDF software system was evaluated by a med-
ical expert and it was also used in a number of other studies
performed by our group described in [4,5,12] and also pre-
sented in Table 1, where despeckle filtering was applied to
increasing the visual perception evaluation of the medical
expert.

The proposed IDF system can also applied for normaliza-
tion of ultrasound imaging, as it is described in this study and
is also documented in other studies performed by our group
[3–5], [12–19]. It was shown in [12], that ultrasound image  nor-
malization applied before despeckle filtering, improves the
image  quality to assist the visual evaluation by experts. In
[13–15] image  despeckle filtering was applied prior to the seg-
mentation of the IMC  in ultrasound images of the CCA, and
the segmentation of the atherosclerotic carotid plaque. In [18],
normalization was applied for the generation of the M-mode
image from ultrasound videos of the CCA, whereas in [17], nor-
malization was applied prior video despeckle filtering of the
carotid and prior the segmentation of the IMC [39], and the
atherosclerotic carotid plaque [19] from ultrasound videos of
the CCA.

While there are a number of commercially available soft-
ware  packages for denoising and/or analyzing ultrasound
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images [10,11,40,41], we  found no other studies where an inte-
grated software similar with the one presented in this study
was proposed. The DsFlsmv filter, found to perform the best
in this study, was also found to perform better than other
despeckle filters in two different studies presented by our
group [5,12]. It was also used to increase the accuracy of the
segmentation of the atherosclerotic carotid plaque [15], the
IMC  [14], and the media and the intima layers [13] of the
CCA. In [24], the Ultra3D® image  processing and visualization
software package incorporates additive median noise image
filtering to increase the optical perception evaluation. The
Usimagetool® [25] that is suitable for processing and visual-
ization of 2D and 3D ultrasound images, incorporates speckle
reducing anisotropic diffusion [33], as well as a number of
other additive noise filters. Additionally, there are a num-
ber of other software systems available in the market for the
segmentation of the IMC  in ultrasound images of the CCA
[20,21,23] (SegmentTM, AtheroedgeTM, Royal Perth IMT soft-
ware and M’Ath®), where image  despeckle filtering is not
incorporated. Finally, in [22] a software system for the manual
delineation, and automated image  normalization and texture
analysis of the atherosclerotic carotid plaque in ultrasound
images of the CCA was presented.

Speckle is not truly a noise in the typical engineering sense
because its texture often carries useful information about
the image  being viewed [26,42]. It is the primary factor that
limits the contrast resolution in diagnostic ultrasound imag-
ing, thereby limiting the detectability of small, low-contrast
lesions, and making the ultrasound images generally diffi-
cult for the non-specialist to interpret [5,26,27,29]. Due to the
speckle presence, ultrasound experts with insufficient experi-
ence may not often draw useful conclusions from the images
[3,4]. Speckle noise also limits the effective application of
image processing and analysis algorithms (i.e. edge detec-
tion, segmentation) and display in 2D and volume rendering
in 3D. Therefore, speckle is most often considered as a dom-
inant source of noise in ultrasound imaging and should be
filtered out [26–28], without affecting important features of the
image. In [43], where a review on ultrasound image  segmen-
tation methods is presented, it is discussed whether speckle
should be treated as noise or a feature. It was concluded that
from a segmentation perspective, you may choose to remove it
or utilize it for the information it contains. Speckle reduction
filtering of the CCA was also proposed by [3–5,12–19] where
it was shown that this improves the image  quality and the
visual evaluation of the image.  However, in other segmenta-
tion studies for extracting the carotid artery plaque borders
in intra-vascular ultrasound (IVUS) imaging, speckle was used
as useful information [42,44]. Table 2 showed that most of the
features presented in this study are preserved after filtering,
while at the same time the optical perception evaluation is
improved. It should be also noted that due to specific char-
acter of some echo images, speckle directionality should also
be considered by estimating appropriate texture features from
the area of interest [45]. Such an approach will ensure that tex-
ture features carry information that it is not biased by speckle
orientation.

It was also documented in other studies [1,4,11,21,30,33],
that the MSE, RMSE, SNR and PSNR measures are not objective
for image  quality evaluation and that they do not correspond

to all aspects of the visual perception nor they correctly reflect
artifacts [1]. Recently, the Q and SSI [1] measures have also
been proposed for objective image  quality evaluation. It is also
important to note that the proposed IDF toolbox consists of a
combination of subjective and objective measures that should
be used in combination for proper image  quality evaluation
results [5,12].

We  have found in the technical literature numerous
detailed examples of 2D algorithms for reducing speckle and
improving image  quality of ultrasound images but there is rel-
atively little information available on the commercial image
processing techniques employed in practice, such as Speckle
Reduction Imaging (GE Healthcare, Milwaukee, WI), Xtreme
Resolution (Philips Healthcare, Bothell, WA) and, indeed, the
methods evaluated in this paper. The proposed IDF software
tool may help toward this direction and could be utilized as a
complementary tool in the clinical praxis.

Some other software packages proposed recently in the
literature and freely made available as standalone packages
have been developed for the automatic classification and seg-
mentation of 2D/3D medical images [46], the segmentation of
the IMC  in ultrasound images [47], DICOM series of ultrasound
images of the CCA [48], as well as for image  texture analysis
[49].

5.1.  Limitations  of  the  image  despeckling  method

There are some limitations in the proposed methodology
which are summarized below. MATLAB® is not the most
computationally efficient environment. However, most of the
implemented algorithms, programmed in MATLAB® are suffi-
ciently adequate, in particular in and manually defining and
despeckling structures, as well as if the users can effectively
define ROI and crop images to reduce the image  dimensions
using the available tools in the software. Therefore, computa-
tion speed is not a limiting factor for our software tool as the
filtering can also be applied in an ROI.

Another issue is that some automatic algorithms use many
user-configurable parameters, such as the size of the moving
window, the number of iterations and the coefficient of varia-
tion and is left to the user to choose the best parameter values.
In this application we  have chosen default initial parameter
values based on our experience. However, in many  scenarios
these parameters may still need to be changed by the user to
achieve optimal results.

Validation of the final results is one of the most challeng-
ing tasks in medical image  analysis applications. Results are
usually compared with the optical perception evaluation by
specialists, as it is also done in this study. It is true that such
comparisons are often affected by other issues, such as, for
example, inter- and intra-observer variability [3–12]. However,
it is relatively safe to consider automated methods as sec-
ond opinions intended to aid the user. This practice has been
shown to be useful in many  Computed Aided Design applica-
tions.

It should be noted that the processing time of the pro-
posed method could be further reduced by applying despeckle
filtering only on selected areas of the image.  Furthermore,
software optimization methods (i.e. the MATLAB® software
optimization toolbox) could be investigated for increasing the
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performance of the proposed IDF software system. Finally, it
should be noted that the proposed methods could also be
applied to other applications, such as echocardiography but
a direct comparison of the results produces with this study
will not be possible as different results will be produced with
a different database.

6.  Concluding  remarks

In this paper, a freeware despeckle filtering toolbox for ultra-
sound images has been presented that can be downloaded
from (http://www.cs.ucy.ac.cy/medinfo/). The software tool-
box proposed in this study is based on the following 10
despeckle filters, DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwa-
hara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif and
DsFsrad. The toolbox also supports image  normalization,
manual delineation of structures, extraction of textures and
quantitative evaluation metrics between the original and
the despeckled images, as well as qualitative evaluation by
experts, where all computed results are saved in a file for fur-
ther use. The system was evaluated on atherosclerotic carotid
plaque ultrasound images, where it was shown that the filters
DsFlsmv, and DsFhmedian improved image  quality perception
(based on the expert’s assessment and the quantitative image
quality metrics). It is anticipated that the system could help
the physician in the assessment of cardiovascular image  anal-
ysis. However, exhaustive evaluation of the despeckle filtering
toolbox has to be carried out by more  experts on more  image
samples.
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